

San Diego State University

Electrical and Computer Engineering Instructor | Faculty Advisor | Barry Dorr Chair of the Department of ECE | Chunting Mi Special Thanks | Mark Bruno

Background

The Aztec Baja SAE team requested a smart system that controls the rigidity of their car's suspensions autonomously. The system has 4 modes: soft, medium, hard, and active, but the crutch of the project is the active mode. The active mode adjusts the suspensions in real-time, reacting to the terrain of the race around it in order to give maximum comfort to the driver as they go through a grueling multi hour race.

Project Requirements

- Must integrate with four iQS Stepper Motors/Suspension System received from FOX
- Four Modes: Soft, Medium, Hard, Active
- Must connect to external Data Logger (Baja Subsystem)
- All computing must be done locally on the vehicle.
- Must be suitable for racing environment.
- Power supply must allow the device to run continuously for a minimum of 5 hours, race has 1 intermission if needed.
- Noticeable improvement in driver performance.
- Budget: \$250 + may used club budget (\$1200) only with itemized approval.

System Diagram

pproximate Neodymium Magnet placement glued onto wheel lever away from fulcrum Approximate Hall Effect Sensor mount point on each wheel with welded extension

Functional Diagram

Hardware/Key Components

<u>Arduino Due</u> The brains of the project. Receives input from Hall Effect sensors and sends control signals to stepper motor drivers with onboard PWM pins.

Stepper Motor Drivers 4 in total. Each driver controls one suspension stepper motor. Receives 4 control signals, each one corresponding to one coil in the motor.

Hall Effect Sensors Attached to each suspension is one Hall Effect sensor and a magnet. As the suspension moves, the magnet will get closer or farther to the Hall Effect sensor, which outputs a voltage relative to the strength of the magnetic field around it.

Software Flow

Fixed Modes Code

Adafruit Stepper Motor Driver

PCB Design & Enclosure

