G.A.P.S. Garage Assisted Parking System

Jacob De Loa | Tom Jimenez | Sara Kouyoumjian | Jordan Trinh

“Closing the GAPS between YOU and the FUTURE”

Background

- Why?
 - People are looking to find new ways to modernize their homes and assist themselves in simple tasks such as parking their vehicles in the garage

Overview

- Problem
 - Damage caused by vehicle bumpers by accidentally hitting objects/walls
 - Carbon-monoxide poisoning

- Solution
 - Assisted parking system
 - Active vehicle motor (sound) detection

System Block Diagram or Design Specs

Overview / G.A.P.S.

- System
 - Garage Model: Ultrasonic Sensor, Mechanical Door, Sound Detection, WiFi, RFID
 - RC Car: Receiver and Transmitter

Hardware / Key Components

- Ultrasonic Sensor
 - Measures the distance to the target by measuring the times between the emission and reception.

 Nano 33 IoT
 - Low Power Arm Cortex-MO 32-bit SAMD21, with WiFi and Bluetooth connectivity operating in 2.4GHz range.
 - Operating voltage at 3.3V with 11 PWM Pins.

- Garage Model
 - Unipolar 5V stepper motor: 513 steps per revolution
 - RC522 RFID Module 13.56MHz
 - Micro-controller

Garage Block Diagram

Budget

- Total Spent: $359.37

Acknowledgements:

Advisor - Dr. H. Nguyen
Sponsor - Robert Kain, B.S. Mechanical Engineering, MIT

496 B Spring 2020

San Diego State University