"Closing the GAPS between YOU and the FUTURE"

G.A.P.S. Garage Assisted Parking System

Jacob De Loa | Tom Jimenez | Sara Kouyoumjian | Jordan Trinh

Background

• Why?

 People are looking to find new ways to modernize their homes and assist themselves in simple tasks such as parking their vehicles in the garage

<u>Overview</u>

Problem

- Damage caused by vehicle bumpers by accidentally hitting objects/walls
- Carbon-monoxide poisoning

Solution

- Assisted parking system
- Active vehicle motor (sound) detection

System Block Diagram or Design Specs

Overview / G.A.P.S.

System

- Garage Model: Ultrasonic Sensor, Mechanical Door, Sound Detection, WiFi, RFID
- RC Car: Receiver and Transmitter

Hardware / Key Components

Ultrasonic Sensor

Measures the distance to the target by measuring the times between the emission and reception.

Nano 33 IoT

Low Power Arm Cortex-MO 32-bit SAMD21, with WiFi and Bluetooth connectivity operating in 2.4GHz range. Operating voltage at 3.3V with 11 PWM Pins.

Garage Model

- Unipolar 5V stepper motor: 513 steps per revolution
- RC522 RFID Module 13.56MHz
- Micro-controller

Garage Block Diagram

<u>Budget</u>

Total Spent: \$359.37

Website: http://bit.ly/Team_49_Senior_Design

Acknowledgements:

Advisor - Dr. H. Nguyen Sponsor - Robert Kain, B.S. Mechanical Engineering, MIT

