

Project Overview

The Filter Frequency Response Visualizer is a Bode plot visualizer utilizing analog circuit design to obtain the magnitude and phase response of a passive electrical filter. This project was designed to be used in a test environment, such as a lab, for users to become more familiar with how a filter works. Users will be able to use the computer interface designed by the team to visualize and then download the frequency response of the circuit as a comma-separated value file on their own computer. The interface will display the magnitude response in decibels and the phase response in degrees after each sweep.

Project Requirements

- Sweep through the specified frequency range of 20Hz to 30kHz
- Complete frequency sweep in seven seconds or less
- Utilize analog circuits to obtain magnitude and phase response
- Sampling must be done through firmware
- Connect with a computer interface that can visually represent the data
- Establish data transfer between Arduino and computer
- Power system that steps down and distributes power from the wall

Ezra Gonzalez

Jarrod Rowson

Trent Moca

Cade Ramirez

The Team

Louise Van Aken

Filter Frequency Response Visualizer (FFRV)

Created by Team 18 – Signal Sleuths Faculty Advisor: Dr. Ashkan Ashrafi System Level Diagram Filter Under Peak Rectifier Test OUT Detector IN VVV Magnitude Analysis System Low-Pass Filter Arduino Due USB Micro Type B Laptop: USB TYPE A 🗲 Firmware Flow Data From Serial Raw Data Conversions in GUI Magnitude (dB): 20 * log10(magnitude data) USB Phase (degrees): ia I arctan(phase voltage data) Magnitude M0 M1 M2 Average Plot Drag Lines M0 M1 M2 Phase and Output Magnitude Python GUI Comma Values **Delimited Data** Variable Filter Under - ADC Support ' Analog Test Frequency Output Sampling

San Diego State University

Arduino Firmware

Magnitude Analysis System

Test setup of FFRV

Procured Components

AD9850 DDS Signal Generator Also referred to as the WOS, this module is used to generate the frequency sweep that goes through the filter under test

Arduino Due This microcontroller drives and powers the AD9850, samples the filter response to the

frequency sweep, and transmits the response data to the GUI. **AD734 Analog Multiplier** This integrated circuit is responsible for multiplying the AD9850 output with the response from the filter under test to detect the phase response.

Spring 2023