EE 631 RF Electronic Circuits

Catalog Description
Distinguishing characteristics of RF circuits; analysis of noise and nonlinearity in circuits; frequency-selective and impedance matching networks; RF amplifiers, oscillators, and frequency conversion circuits; phase-locked loops and their applications.

Instructor
Prof. Madhu S. Gupta
Telephone: (619) 594-7015
Room 403C, Engineering Building
e-mail: mgupta@mail.sdsu.edu
Office Hours: M, W 12:00 – 2:00 p.m.; 8:30 p.m. – 9:30 p.m.

Schedule
Class: Mondays and Wednesdays, 7:00 – 8:15 p.m., Room E-201
Midterm: Mid-semester – around early October.
Final Examination: Wednesday, December 16, 2015, 7:00 p.m. – 9:00 p.m.

Pre-requisites
Some background in, or familiarity with, each of the following subject areas is necessary:
(1) Microelectronics (electronic devices, models, and circuits)
(2) Circuit analysis (two-ports, network parameters, s-plane, transfer functions)
(3) Signals and systems (spectrum, filtering, feedback, stability)
(4) Transmission lines/microwave circuits (impedance matching, S-parameters)
(5) Random processes (power spectral densities, correlation)

Textbook
(Cambridge University Press, 2004)

Work Load
1. Readings: From textbook; handouts, outside resources, current professional journals
2. Practice Problems: assigned problems, with a problem set per topic
3. Midterm and final examination

Grading
Letter grades, based on the composite performance on each of the following factors
<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>20%</td>
</tr>
<tr>
<td>Midterm</td>
<td>30%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>50%</td>
</tr>
</tbody>
</table>

Policies
1. On Exams: There are no makeup exams. Midterm and final exam are open-book.
2. On Homework: A problem set assigned on each topic; collected, graded, and returned.

Scope
Design of RF integrated circuits in Silicon CMOS technology
- Passive components and active devices at RF; their characteristics and models
- Performance measures; their calculation from circuit models; their tradeoffs
- Linear circuits (narrowband and broadband amplifiers, LNAs)
- Mildly nonlinear circuits (oscillators, VCOs, PLLs, power amplifiers)
- Strongly nonlinear circuits (High-efficiency power amplifiers, mixers)

Course Objectives
By the end of the semester, the student will be expected to be able to
1. Read and understand current professional literature and journals in the RFIC field
2. Analyze RFICs using linear circuit models, and determine their performance measures
3. Design passive elements and matching circuit employed in silicon CMOS RFICs
4. Interpret performance metrics concerning frequency response, noise & dynamic range
5. Relate CMOS characteristics to material, geometrical, and operating point parameters
6. Use canonical circuit building blocks and design methods to synthesize RF amplifiers, oscillators, mixers, and phase-locked loop circuits (time-permitting).
EE 631 RF Electronic Circuits : Topical Course Outline

1. Domain of use of RF Integrated Circuits in wireless and other applications
 Circuit characteristics required in such applications

2. Series and parallel RLC resonators; Q; lumped L-section impedance transformers.

3. Passive lumped elements employed in RFICs
 Interconnects – transmission line sections; RLC lumped models; skin effect
 Resistors – skin effect, design and layout, models
 Capacitors – types of structures, circuit models, estimation of capacitance
 Inductors – self and mutual inductance; layout, associated parasitics, circuit models
 Transformers

4. Review of MOS device physics, accumulation, depletion, inversion regions
 DC Characteristics; small-signal models; equivalent circuit models
 RF characteristics, f_T and f_{max}

5. Time-Domain Characterization of Linear Circuit Response
 Delay; rise-time; approximations for estimation

6. Frequency-Domain Characterization of Linear Circuit and Amplifier Response
 Pole-zero diagrams and frequency-response characteristics
 Approximate methods (open-circuit and short-circuit time constants methods)

7. High frequency amplifier design – narrowband and wideband
 Time-domain and frequency-domain viewpoints

8. Low-Noise Amplifier (LNA) design
 Thermal, shot, flicker noise.
 LNA design based on power and noise constraints.

9. High-Power Amplifier design
 Characterization of Nonlinearity and Dynamic Range
 Single-tone characterizations
 Two-tone characterizations, IIP3

10. Oscillator Fundamentals, Barkhausen oscillation criterion
 Feedback oscillator design

11. Mixers, their performance characteristics, and
 Mixer design and topologies (Gilbert cell)

12. Phase-Locked Loops

Periodicals Both research journals and trade magazines are good sources of articles for
learning about recent advances, and staying current :

 Electronics Letters
 IEEE Journal on Solid State Circuits
 IEEE Journal on Selected Areas in Communications
 IEEE Microwave and Guided Wave Letters
 IEEE Microwave Magazine
 IEE Proceedings – Part G. Electronic Devices and Circuits
 IEEE Transactions on Microwave Theory and Techniques
 Microwaves and RF
 Microwave Journal
 RF Circuits
 Wireless Systems Design