
A Fable from Vector Valley

� Madhu S. Gupta

Once upon a time, in a valley at
the foot of a mountain, lived a
happy community with their

homes, ranches, and farms neatly ar-
ranged in arrays of fenced yards. One
eventful day, there was an earthquake
in the valley, and it suddenly flooded
with water. The water rose quickly, and
soon most of the valley was under
varying heights of standing water, an-
kle-deep in some places and neck-deep
in others. Thereafter, the level of water
no longer changed with time, although
the water itself was not stationary, and
continued to flow with speeds and in
directions that varied from place to
place, but not with time. You might say

a time-invariant, or “static,” state had
been reached.

The source of this water was a mys-
tery to everyone, and there was much
speculation as to the source, ranging
from the mystical (angry gods) to tech-
nical (a rupture in the underground aq-
ueduct that passed through the valley).
A likely explanation was that the earth-
quake had opened up some hitherto un-
derground spring. Since the water level
was static, some thought that no “new”
water was being added, and the water
was merely circulating. Others ex-
plained the flow of water by postulating
that the earthquake must have opened
up not only a spring but also some fis-
sures in the ground that were draining
away the gushing water. The perplexed
officials at the city hall decided to send

someone to find out where all this water
was coming from or going to. They se-
lected an engineer by the name of Gar
Clauss for the investigation.

Being a brave engineer, Gar Clauss
was willing to take the usual risks of
moving around in standing flood wa-
ters, such as rapid undercurrents in the
water, shifting ground, and snakes or
other dangerous animals that might be
found in flood waters. So he began sur-
veying the individual properties in the
valley to find where the source(s) and
sink(s) of the water were. This, he dis-
covered, was not so easy—many large
properties in the valley were sur-
rounded by a chain-link fence that he
could not enter due to absentee owners,
trespassing laws, or secretive residents,
not to mention the prospects of meeting
an occasional ferocious dog guarding
the fence. To get a court order to enter a
private fenced area required sufficient
grounds to suspect that the source or
sink of water lay within it. A visual ex-
amination from the outside was not
helpful since any sources and sinks of
water were submerged. Consequently,
any investigations that Gar Clauss
could make had to be based on the ob-
served flow of floodwater, and that ob-
servation could only be carried out from
outside each property around the pe-
riphery of its fence!
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This is a fable about locating submerged sources and sinks of wa-
ter in a flooded valley, based solely on flow rate measurements
carried out around closed boundaries. Aimed at students in

introductory courses on vector calculus, electromagnetism,
and continuum mechanics, it is meant to motivate vector
integration, couch it in physical terms, make it intuitively
reasonable, exemplify its use, develop some understanding
of surface integrals, and at the same time hold the students’

interest by being entertaining. Quantitative basis for the
fable and links to a discussion of Gauss’ law in

electrostatics are presented.
Carl Friedrich Gauss

This issue’s Speaker’s Corner features two items. The first is a Gaussian fable authored by Madhu S. Gupta, who will be-
come the new editor-in-chief of this Magazine starting in 2003. The second, on page 25, is a report on AdCom-approved
changes to the MTT-S bylaws by Michael DeLisio.
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Quantitative Basis of the Fable

Fables are said to be as old as mankind and have long

been used to convey lessons, morals, and teachings.

They can be effective in other teaching situations as well,

such as in clarifying complex or conceptual issues. Vector cal-

culus involves many such conceptual difficulties for novices

where a physical crutch can be helpful.

The recounted fable is based on the well known “continu-

ity equation,” sometimes also called the Law of Conservation.

This equation is essentially a bookkeeping equation used to

track the whereabouts of a physical quantity that is capable

of flowing like a fluid; examples are fluid volume, number (or

density) of particles, mass, charge, and energy. The flow of

such a quantity is quantitatively described by a flux (i.e., the

rate of transfer across a given surface) and represented by a

point vector J , because it has both a magnitude and a direc-

tion at each point. The surface integral of the flux J of that

physical quantity, carried out over the closed surface S, de-

scribes the net rate of outflow of that quantity from the

closed surface S, and, therefore, must be related to the rate

at which that quantity is produced (created, generated, intro-

duced, annihilated, removed, or stored away) within the

closed surface S by some source, agent, or process; however,

if the physical quantity is conserved, a net outflow must

cause a change in the volume density ρ of the physical quan-

tity within the volume V enclosed by the closed surface S,

leading to the continuity equation

( )
S V

d d dV dt∫ ∫⋅ = −J S ρ . (1)

This equation is a physical statement about the nature of

the flowing quantity, since it is applicable only if the physical

quantity involved is extensive (i.e., additive) and conserved

(e.g., fluid volume, provided the fluid is incompressible). If

the surface S is fixed, so that the flow occurs only due to the

movement of the quantity rather than the surface, only that

component of the flow need be accounted for, so that

( )
S V

d dV t∫ ∫⋅ = −J S ∂ ρ ∂ . (2)

This so called “integral form” of the continuity equation is

the basis of the fable recounted here.

A second form of the same equation can be arrived at

through the use of divergence theorem, due to Gauss, some-

times also called the Gauss-Ostrogradsky theorem. This fa-

mous theorem relates the surface integral of a vector field A ,

carried out over a closed surface S, to the volume integral of

the divergence of that vector field over a volume V enclosed

by that closed surface.

( )
S V

d dV∫ ∫⋅ = ∇ ⋅A S A . (3)

This theorem is a mathematical identity in vector calcu-

lus and is applicable to any vector field, subject only to

some subtle conditions concerning smoothness of the vec-

tor field A , convergence of integrals, and connectedness of

the closed surface.

When the divergence theorem (3) is applied to the flux J ,

which is a vector field, in (2) in the limiting case of a small

volume, it leads to a differential (or point or local) form of

the continuity equation,

∇ ⋅ = −J ∂ρ ∂t . (4)

The two forms of continuity equations (2) and (4) can

be applied to many areas of continuum mechanics, such as

fluid mechanics, thermal physics, and electromagnetic the-

ory, by allowing J and ρ to represent a suitable pair of phys-

ical variables.
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Being an intelligent engineer, Gar
Clauss came up with a scheme to iden-
tify the property or properties where a
water source or sink may be present,
and, at the same time, collect suffi-
ciently convincing data to request a
court order for entry. For any property
under scrutiny, he proposed to measure
the rate and direction of the flow of wa-
ter all around the chain-link fence sur-
rounding that property. For each
elementary section of the fence, he
planned to make the following three-
way determination:

1. If the direction of the flow of the
water within that elementary sec-
tion of the fence was parallel to
the fence (which he called “tan-
gential” flow), he would ignore
that rate of flow, for it did not con-
tribute to a net inflow or outflow
of water into the property.

2. If the direction of the water flow
was perpendicular (or “normal”)
to the fence, he would include the
full rate of flow in his accounting
with a negative sign if the water
flow was inwards and with a posi-
tive sign if it was outwards, for it
contributed to a net in- or out-flow
of water from the fenced area.

3. Finally, if the direction of the wa-
ter flow in that elementary sec-
tion of the fence made an angle
other than a right angle with the
fence, he would resolve that flow
into a tangential and normal
component and would ignore the
first but include the second in his
accounting.

Gar Clauss then added the contribu-
tion from each and every elementary
section of the fence to determine the net
outflow of water from a given fenced
lot. In this process, he was careful to
make sure that he did not miss any part
of the fence, so his accounting was al-
ways being carried out around a closed
periphery. Since the water level was
static everywhere, he argued that there
should be no net in- or out-flow of water
from the fence around any property in
which there is no water source or sink.
However, for a property in which a wa-
ter source or sink is situated, there will
have to be a net flux (either outflow or
inflow). Thus, he could determine if a

given fence circumscribed a source or a
sink of water. Not only that, he could
even find how big the total water flux
was. This would be sufficient evidence
for the court to issue a search order for
the property.

Based on the collected water flow
data, the city engineers were able to
identify the properties that required
closer onsite examination. In addition,
for these properties they were able to
justify court orders where needed, since
the property owners were unable to
contest such impeccable logic as that

contained in Gar Clauss’s methodology.
One contested case, however, involved
an unusual twist and led to an impor-
tant limitation being recognized by the
court. It concerned a property that was
of an annular shape and that completely
surrounded an environmentally sensi-
tive zone consisting of an endangered
species habitat that was not part of that
property. Its owner was able to success-
fully argue in the court that the method of
Gar Clauss did not apply to his property,
since the net flows measured around the
outer boundary of his property could
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have resulted from sources and sinks
situated in that zone and were not de-
finitive proof that their cause lay on his
property. The ruling in that case estab-
lished the legal principle that Gar
Clauss could apply his methodology
only to “simple regions,” or unions
thereof.

As the above technique turned out
to be useful and became established as
a standard procedure in flood surveys,
it began to receive more detailed scru-
tiny. Soon, practicing engineers devel-
oped second-order corrections to the
computed flux to account for the effect
of fence wire thickness and posts. Still

other engineers recognized that Clauss’s
method tacitly assumes the volume of
water to be a conserved quantity, which
would be true only if water were incom-
pressible; hence, the need for another
correction. This correction is relevant
because the decompression of water
produces a larger volume of it, in effect
making it appear as a “source” of water
(and, similarly, its compression would
appear as a “sink”). With a generation
term added, which turns the conserva-
tion law “volume = constant,” into a hy-
perbolic partial differential equation,
Clauss’s method becomes applicable to
a wider variety of engineering applica-

tions, such as analyzing shock waves in
aircraft design and buoyancy in naval
vessel design. As one illustrative exam-
ple of the consequences of compress-
ibility, consider the buoyancy of a large
submerged object, such as a ship. Peo-
ple sometimes crudely articulated Ar-
chimedes’ principle as asserting that
buoyancy is proportional to the volume
of the submerged part of the body. As a
result of the increase in the density of
water with increasing depth due to in-
creasing hydrostatic pressure, a liter of
water at the surface weighs less than
the same volume of water at great
depths. Therefore, the weight of liquid
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Gauss’ Law Viewed as a Conservation Law

Gauss’ law in electromagnetics is a law of physics that

makes a statement about the nature of electromagnetic

fields. As such, it cannot be arrived at by purely deductive

means and must ultimately rely on experimental observation

and inductive reasoning. The experimental basis on which

Gauss’ law rests is Coulomb’s force law, and, indeed, the two

laws are equivalent since either can be deduced from the

other. Gauss’ law was not discovered by Gauss, but was re-

formulated by him in a mathematical form that has a wider

applicability (for example, invariance in the presence of ma-

terials and when observed from moving frames) than some

of the other forms in which the same result can be ex-

pressed. The law relates the electric flux density D to the

electric charge density ρc by

S V cdS dV∫ ∫⋅ =D ρ (1)

and

∇ ⋅ =D ρc . (2)

These are two alternative mathematical forms of the law—an

integral form and a differential form—either of which follows

from the other through the use of the divergence theorem.

The continuity equation and Gauss’ law are entirely differ-

ent physical laws. The continuity equation involves the time

variable t and arises from the conservation law. Gauss’ law

does not involve the time variable and arises from Coulomb’s

law. However, the similarity between the continuity equation

and Gauss’ law in (1) and (2) allows Gauss’ law to be for-

mally viewed as a conservation law. Such a viewpoint follows

naturally from the concept of electric flux density D and is in

the spirit of Faraday’s intuitive approach (as opposed to

Maxwell’s mathematical approach) to understanding electro-

magnetic laws and phenomenon.

The essential characteristic feature of electric field that

makes Gauss’ law possible is the inverse-square nature of

Coulomb’s force law between charges. The electric field in-

tensity, due to a point charge, decreases with distance in the

same inverse square manner as the decrease in the density

(or, alternatively, velocity) of a hypothetical conserved fluid

that is extruded isotropically from a point source and flows

radially outwards. That makes it possible to view the electric

flux density D (which is proportional to the electric field E )

as if it were the flux of a conserved fluid, since both vary with

distance in an inverse square manner. If ρh is the density of

this hypothetical fluid, whose flux density is D , then the con-

tinuity equation for this hypothetical fluid is

( )
S V hd dV t∫ ∫⋅ = −D S ∂ ρ ∂ . (3)

The integral form of Gauss’ law in (1) follows from (3) if

the time rate of change of the density ρh of the hypothetical

fluid is identified with the density ρc of the electric charge

ρ ∂ρ ∂c h t⇔ − . (4)

While such an identification may appear to be entirely arbi-

trary, it is no more baseless than conceptualizing D as a “flux”

variable that flows even under static equilibrium conditions.



displaced by a tall submerged body is
not exactly proportional to the volume
of the submerged body. Indeed, Clauss’s
procedure (applied to pressure gradient
rather than the flow rate of water) could
be used to deduce that the displacement
of the same volume of water at a greater
depth causes larger buoyancy, thus con-
firming the more precisely stated Archi-
medes’ principle that buoyancy equals
the weight of actually displaced water.

As the technique was more com-
monly applied and its wider applicabil-
ity recognized, it came to be known as
Clauss’s theorem. International confer-
ences were organized to discuss the lat-
est developments in the field. The heat
transfer engineers applied Clauss’s re-
sult on flow of fluids to the flow of heat.
Mathematicians launched investiga-
tions into the existence, uniqueness,
and bounds of the computed net flux,
while physicists worried about the as-
sumptions implicit in Clauss’s theorem
concerning the nature of fluids. The

philosophers began exploring the
philosophical implications of “mea-
surement from a distance” on physical
laws, while the legal scholars consid-
ered the need to enact new laws to pro-
tect the privacy of individuals from
those who may make measurements on
them from a distance. When the re-
search sponsoring agencies got flooded
with proposals for funding research
projects on the subject, some wags
asked if Clauss’s theorem could be
used to determine whether the flood of
research papers had any net outflow of
ideas, or was it all purely circulatory.

As the power of his theorem was rec-
ognized, Gar Clauss became well
known. The city fathers were so de-
lighted to find such a clever engineer
among them that they gave him the cov-
eted “Exemplary Service” award; the
award citation read, ”for deducing,
from the measurement of the flux
around a closed boundary, the source of
the flux within.” The mayor issued a

proclamation that all closed surfaces
would hereafter be called “Claussian
Surfaces” in honor of Gar Clauss. The
Revenue Department contacted him to
see if perhaps he could help them esti-
mate from a distance the flow of wealth
in and out of businesses with shady rep-
utations that wouldn’t let the tax collec-
tor come near them.

The rest of this story is, unfortu-
nately, not an inspirational tale and will
therefore not be recounted here, for fear
that it may disillusion the young, scut-
tle their idealism, and make their inno-
cent minds cynical. It relates to the fact
that the rate of outflow at a particular
location, which Gar Clauss referred to
as the net “divergence” of flow rate,
was misunderstood by the judge, who
had been a humanities major in college.
The judge ruled that if the flow had di-
versity, then it required a broad com-
munity input and consensus and
should not be subjected to Clauss’s
cold, one-size-fits-all logic.
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