
T
he purpose of this article is to point out a
conceptual link between an artistic cre-
ation by the well-known Dutch artist
M.C. Escher (1898–1972), called Circle
Limit IV (woodcut, 1960), and the most

commonly used graphical aid in microwave engi-
neering work, called the Smith chart (1939–1944), cre-
ated by the U.S. engineer P.H. Smith (1905–1987). The
basis of Escher’s art and of the Smith chart can both
be traced back to the invariance of the cross ratio of
four complex numbers under a Möbius transforma-
tion on the domain of complex numbers. When mea-
sured using a hyperbolic distance metric that is
induced by the invariant cross ratio in Poincare’s
open-disk model of hyperbolic space, the visually dif-
ferent geometrical figures in Escher’s work are found
to have a mosaic-like fixed size and periodicity. The
Smith chart can be used as an aid in
constructing other Escher-like
drawings that display
periodic mosaic pat-
terns and at the
same time con-

vey the perception of infinite progression within a
unit circle.

The public image of an engineer in the media
notwithstanding, engineers do enjoy, engage in, con-
tribute to, enable, and inspire the fine arts, both per-
sonally and professionally. This is to be expected,
because engineering, like art, requires creativity, disci-
pline, attention to detail, and sensitivity to human per-
ception. The vibrant interface between technology and
art is exemplified by numerous aesthetic and creative
works, artifacts, and exhibits from a variety of art
forms, including music, dramatics, photography, sculp-
tors, and paintings [1]–[3]. This article points out yet
another little-known interface between art and engi-
neering tools, specifically that connecting certain
woodcuts by Escher and the Smith chart pervasive in
microwave engineering. The readers can use it to

enhance their appreciation of that
art, to stimulate an interest in

microwaves among non-
professionals, or to

create Escher-like
art themselves.
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Escher and His Art

Artist with Appeal Among Technologists
There have been a number of artists, such as Leonardo
da Vinci, whose work holds a special appeal and
affords a deeper level of appreciation to the technolog-
ically oriented viewers. One of the most popular
among the 20th century artists of this kind is Escher,
whose works have fascinated scientists and engineers
for about one-half century. They have been repro-
duced in scientific journals, magazines, and mono-
graphs and have appeared on the covers of textbooks,
posters, calendars, and in popular media. One reason
for their appeal is Escher’s use of such figures as regu-
lar polyhedra, periodic designs, mirror images, and
objects like the Möbius strip, which are familiar to the
technologists and that convey the sense of harmony
and order in his drawings. A second reason for their
popularity has been the unusual ways in which space
is treated in the works, through reflections, stretching,
deformation, projection, and other such transforma-
tions, which have struck a chord with viewers having
a technological inclination. This is particularly remark-
able given that Escher himself was not a professional
mathematician or even trained in mathematics. His
intuitive manipulation of spatial regions, arrived at
from aesthetic grounds, nevertheless represent sophis-
ticated mathematical tools, such as conformation map-
ping and hyperbolic geometry, thus suggesting that
these mathematical operations are not entirely arbi-
trary in the abstract sense but have a relationship to
human perception.

Escher’s Life
Maurits Cornelis Escher was born in Leeuwarden,
Holland, on 17 June 1898 and, along with four broth-
ers, grew up in Arnhem. While his father was a civil
engineer and three of his brothers pursued science or
engineering fields, he was not mathematically inclined
and pursued his interest in graphic arts. He attended
the School of Architecture and Decorative Arts in
Haarlem, where he learned woodcut technique from
Samuel de Mesquita and thereafter migrated to Italy in
1922 to settle in Rome, where he lived until 1934. Dur-
ing this period, he rendered a large number of sketch-
es of scenery and buildings from southern Italy. In
1935, he left Italy for Switzerland, where he lived for
two years, followed by three years in Belgium, and
finally in 1941, settled in Baarn, Holland, for the next
three decades until his death in 1972. A self-portrait of
Escher from 1935 is shown in Figure 1.

Escher’s Works
Escher’s creations, produced over four decades,
include some 450 works of art, including woodcuts,
wood engravings, lithographs, and drawings [4].
Although there is a large variety in Escher’s lifetime

of output, several enduring themes can be identified
in his creations, of which the following six are the
principal ones. An illustrative example of each is
shown in Figure 2.

Landscapes
During his early years in Italy, Escher produced
sketches of landscapes, both real and imaginary, with a
striking visual effect due to his clever choice of van-
tage points or use of light, shadow, and color.

Unusual Perspectives
Escher produced a number of sketches showing fine
details in things ranging from the mundane objects or
scenes of daily life to the architectural details of monu-
mental buildings but with unusual vantage points and
with captivating results.

Symmetries and Periodicities
Tessellations are forms or arrangements of periodic,
mosaic-like patterns used as adornments. A large
number of Escher’s works drew inspiration from the
art of the Moors who occupied Spain from 711 to
1492 and decorated walls and floors with congruent

Figure 1. A self-portrait of M.C. Escher (1898–1972) in
spherical mirror, dating from 1935 titled Hand with
Reflecting Globe.
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Figure 2. Representative examples of Escher’s art, illustrating the major themes in his work. (a) Unusual landscapes. Gori-
ano Sicoli, Abruzzi (1929). (b) Unusual perspectives. Inside St. Peter’s (1935). (c) Tessellations. Regular Division of
Plane III (1957). (d) Gradual transformations. Sky and Water I (1938). (e) 2-D–3-D illusions. Waterfall (1961). (f) Repre-
sentations of infinity. Fish Vignette (1956). 

(a) (b)

(c) (d)

(e) (f)
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multi-colored tiles that covered the surface com-
pletely. However, while the Moors were forbidden
from depicting animate objects due to religious
reasons, Escher made it his hallmark. His draw-
ings illustrate many types of symmetries, which
have delighted crystallographers and group theo-
rists [5], [6]. 

Gradual Transmutations
A distinctive motif in many of Escher’s creations and
in some of his most recognized works is the gradual
transformation of one figure or tessellation into another
in successive tiles of a mosaic-like periodic drawing.
Combined with the unusual perspectives, they create
an arresting effect.

Two- to Three-Dimensional Illusions
The representation of a three-dimensional (3-D) object
in a two-dimensional (2-D) picture results in some
ambiguities in human observation and thus provides
many opportunities for optical illusions. Escher was a
master of this art form of tricking the human eye in
delightful ways. 

Representations of Infinity
A number of Escher’s works convey a graphical impres-
sion of the infinite within a finite boundary by suggest-
ing an indefinite continuation of a tessellation in space.
Works of this type will be further examined here.

Representation of Infinity with Tessellations
The concept of infinity has long had the aura of mys-
tery and intrigue among mathematicians and laymen
alike [7], [8]. Many of Escher’s mosaic-like works
suggest a sense of infinity, due to their periodicity
and unlimited extendibility [8], but in practice, they
must come to an abrupt stop at the boundary of the
artwork. Clearly, more is required to convey the
sense of truly infinite extent, and Escher was fasci-
nated with such representation of infinity in a finite
space. Late in his career, starting in the 1950s, Escher
made a number of attempts to represent an infinite
mosaic within a circular or square boundary, as illus-
trated in Figure 3. 

Escher attempted to capture the perception of an
infinite continuation within a finite area through a pro-
gressive reduction in tile size, either toward the center
or toward the edge of the drawing. In one of his early
attempts [Figure 3(a)], the approach to the infinite
occurs toward the center of the drawing with the
shrinking of the tile size. This was reversed in subse-
quent works [Figure 3(b) and (c)], where the size
reduction occurs toward the periphery of the drawing
as the infinite is approached. Escher himself found
these earlier works unsatisfying and continued to look
for ways to improve upon them. His later works
include two woodcuts, titled Circle Limit III [Figure

3(d)] and Circle Limit IV [Figure 3(e)], which are the
best-known works of this genre. The procedure for the
construction of tessellations with a fixed figure of any
desired outline has been described in the literature [9],
[10], as has the analysis of the geometrical structure of

Circle Limit III [11], [12]. In this article, we analyze the
structure of Circle Limit IV in detail.

The Structure of Circle Limit IV

Tessellations Constructed by Transformations
Considered one of Escher’s masterpieces, Circle Limit
IV, also titled Heaven and Hell, was completed in July
1960 (Figure 4). The original is a woodcut, printed in
black and ochre, measures 416 mm in diameter, and
shows angels and demons in a tessellation that com-
pletely fills the plane. The size of these figures gradu-
ally diminishes from the center toward the edge, with
over two dozen different sizes identifiable, until they
merge into the visual limit achievable in a woodcut.
Although the figures are different in size in a Euclid-
ean sense, we will show that they are indeed congru-
ent when measured with a hyperbolic metric of
distance; viewed in this way, the work is simply a peri-
odic mosaic with a constant tile size and periodicity in
the hyperbolic space.

The first requirement and the principal defining
attribute of a mosaic is the repeated appearance of a
unit element after periodic spatial displacements. Esch-
er’s specialty was in introducing a gradual transforma-
tion in the unit element with each successive repetition.
For a transformed figure to still be recognized as a
transformation of the previous figure, it is necessary
that certain basic traits of the figure remain unchanged.
The transformation to be applied within the unit ele-
ment should therefore have some invariants, and those
invariants should have a visually appealing geometri-
cal manifestation. This is the basis of many of Escher’s
tessellations that display gradual change.

A second requirement imposed here is the need to fit
an infinite lattice on a finite canvas, which in turn
implies that the sizes and the spatial displacements of
the unit element in the mosaic cannot be constant. A
second transformation is therefore needed to be
applied to the size and displacement of the unit ele-
ment upon each successive replication. As a result of
this transformation, the tile dimensions should
approach zero, thereby producing the desired percep-
tion of infinity.

Engineers enjoy, engage in, contribute
to, enable, and inspire the fine arts,
both personally and professionally.
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Figure 3. Escher’s attempts to represent the infinite in various ways. (a) Smaller and Smaller (1956). (b) Circle Limit I
(1958). (c) Circle Limit II (1959). (d) Circle Limit III (1959). (e) Circle Limit IV (1960). (f) Square Limit (1964).

(a) (b)

(c) (d)

(e) (f)
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The woodcut Circle Limit IV (Figure 4) and other
works in this category possess both of the above two fea-
tures—a repeated pattern subjected to a continuing
alteration and a periodicity subject to shrinking with
each repetition of the tile. Therefore, such works must
employ two simultaneous transformations. In the case
of Circle Limit IV, the only transformation applied to
the unit element, such as the figure of an angel, is a
rotation. The transformation applied to the size and
displacement of the unit tile is considerably more
involved and is the subject of our scrutiny below.

Escher’s Circle Limit IV and Smith Chart
The clue that the Smith chart might be relevant to an
understanding of Escher’s graphical art lies in the
radial scales typically provided with a Smith chart.
Among the several scales for reading reflection coef-
ficients, return loss, and standing wave ratio in vari-
ous units, there is one scale that expresses the
voltage standing-wave ratio (VSWR) in decibels, and
extends from zero at the center of the Smith chart to
∞ at the periphery of the chart. This range corre-
sponds to that required by Escher in an attempt to
represent infinity graphically.

For a preliminary test of this idea, the following
simple measurement can be performed on Circle
Limit IV. While most of the angels depicted in the
drawing are visually asymmetric, those with bilater-
al symmetry have an axis of symmetry that passes
through the center of the circle. The height of a bilat-
erally symmetric angel (defined in the radial direc-
tion from head to foot) can therefore be obtained by
measuring, for each of the two ends, the radial dis-
tance from the origin, and taking the magnitude of
the difference between their radial coordinates. If we
scale Circle Limit IV to fit exactly within the unit cir-
cle of a Smith chart and measure the radial distance
of a point with the help of the scale provided for
VSWR in decibels, the results shown in Table 1 are
obtained. It is found that all bilaterally symmetric
angels measure about 8 dB in height. This result
encourages the conjecture that the figures in Circle
Limit IV are congruent with each other and holds
out the hope that an engineering tool such as the
Smith chart might be relevant to understanding an
aesthetic artwork. Demonstrating that the other
angels without bilateral symmetry are also congru-
ent requires a more detailed analysis.

The VSWR scale allows us to measure the dis-
tance only along the radial direction in the unit cir-
cle. To measure the distance between arbitrary
pairs of points �1 and �2 within the unit circle, we
must examine the geometrical origin of the VSWR
scale used with the Smith chart. Such generalized
measures of distance have already been in use in
microwave work in a number of contexts, as will
be pointed out later.

Smith Chart and Möbius Transformation

The Smith Chart as a Graphical Aid
The Smith chart (Figure 5) has become an icon of
microwave engineering. For example, it is often used
in the design of logos and is the most remembered
part of a microwave engineering curriculum decades
later when everything else learned in the classroom
has been forgotten. The Smith chart was originally

Figure 4. Escher’s woodcut titled Heaven and Hell, also
known as Circle Limit IV (July 1960), placed in the unit
circle along with the VSWR scale from the Smith chart.

TABLE 1. Measurements of heights of figures
in Circle Limit IV.

Radial Coordinate Radial Coordinate Height of the 
Figure of the Head, H of the Head, F Figure, |H − F|
Angel #1 8.3 dB 0 dB 8.3 dB

Angel #2 7.2 dB 15.5 dB 8.3 dB

Angel #3 23.5 dB 15.3 dB 8.2 dB

Angel #4 22 dB 30.2 dB 8.2 dB

Angel #5 39 dB 31 dB 8.0 dB

Measurements limited to bilaterally symmetric Angels. Circle Limit IV is superimposed over the
Smith chart, and radial distances from center are measured using the VSWR (in decibels) scale
provided with the Smith Chart.

The  Smith chart was originally
intended to be a graphical aid for

eliminating the drudgery of
computation with complex numbers.
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intended to be a graphical aid for eliminating the
drudgery of computation with complex numbers
[13], [14]. While that has no longer been a necessity
since the appearance of electronic calculators in the
1960s, the Smith chart remains highly useful for visu-
al representation and comprehension of information.

Of the numerous extensions and applications of the
chart that have been proposed over the years [15],
those that aid thinking (rather than merely computa-
tion) continue to be useful for professionals who have
developed an intuitive feel for it. So entrenched is the
Smith chart in microwave engineers’ conceptualiza-
tion that despite their powerful and highly sophisti-
cated computational capability, both the modern
computer-aided design software and the computer-
controlled microwave measurement equipment con-
tinue to present results on Smith chart overlays.

The Smith chart is constructed to perform essentially
two basic tasks:
1) the transformation between a reflection coefficient �

defined with respect to a reference impedance Z0
and the corresponding normalized impedance

Z/Z0: 

� = Z − Z0

Z + Z0
and Z = Z0 + Z0�

1 − �
(1)

2) the transformation of either � or Z upon shifting the
reference plane at which they are defined by a dis-
tance l12 along a uniform transmission line with
characteristic impedance Z0 and propagation con-
stant γ = jβ :

Z2 = Z0
Z1 + Z0 tanhγ l12

Z1 tanhγ l12 + Z0
and �2 = �1e−2γ l12 . (2)

The Smith chart accomplishes the first task by 1) drawing
the polar coordinate scales on a plane for plotting �,
restricted within a unit circle (i.e., to � values for a pas-
sive one-port); 2) drawing the rectangular Cartesian coor-
dinate lines on another, distortable plane for plotting
Z/Z0, limited to the right half plane (also for a passive
one-port); and then 3) distorting the Cartesian coordinate
system such that when the two coordinate systems are
superimposed on top of each other, each point of one
coordinate system coincides exactly with its mapping in
the other coordinate system. The second task is easily
accomplished by a rotation of � by the angle 2 Im[γ ]l12
and requires only a relabeling of the angular scale in the
polar coordinate system in the units of l/λ. Since each of
these two tasks is simply an example of a Möbius bilin-
ear transformation of a complex number, we might be
permitted to claim that the Smith chart is a graphical aid
for carrying out Möbius transformation.

Möbius Bilinear Transformations
Möbius transformations are ubiquitous in microwave
work for practical reasons. The desired or required ref-
erence plane for defining a Z or a � is very frequently
different from the one at which measurement or com-
putation can be carried out accurately and convenient-
ly; reasons include inaccessibility of the plane for
measurement, the unavailability of reference standards
usable at the plane, and structural complexity that cre-
ates multimodal fields or coupling across the plane.
Hence there is a frequent need to transform, or de-
embed, impedances or reflection coefficients between
two reference planes. The electromagnetic structure
intervening between these two reference planes can
often be adequately represented by a linear two-port
network, characterized in the frequency domain by an
impedance matrix [Z] or a scattering matrix [S]. The
transformation of a response function (such as a reflec-
tion coefficient or an impedance) by an arbitrary linear
two-port network is given by 

�in = (S11S22 − S12S21)�L + S11

S22�L + 1

or Zin = Z11ZL − (Z11Z22 − Z12Z21)

ZL + Z22
, (3)Figure 5. The Smith chart, along with radial scales.

(Courtesy of Analog Instrument Co.)

The Möbius transformation in the
complex plane has several useful
properties both in art and in
microwave engineering.
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and each of these is an example of a Möbius transfor-
mation of a complex number.

The Möbius bilinear (fractional linear) transforma-
tion of a complex number Z is defined by 

M(Z) ≡ W ≡ AZ + B
CZ + D

, (4)

where A, B, C, and D are complex constants (meaning
independent of Z). Properties of this transformation
can be stated more compactly by supplementing this
basic definition with some additional requirements,
such as the following:

1)  M(∞) ≡ A/C, and M(–D/C) ≡ ∞, which allows
us to extend the complex plane by including the
point Z = ∞ in specifying the domain and the
range of the transformation, thus making the
Möbius transformation homeomorphic

2) AD – BC �= 0, which allows us to normalize the
transformation by dividing each of the constants
A, B, C, and D by the quantity AD – BC without
altering the transformation in any way.

The Möbius transformation in the complex plane has
several useful properties [16], useful both in art and in
microwave engineering [17], [18]. These properties can
be described in several alternative languages, e.g., alge-
braically, in matrix form, geometrically, and topological-
ly. The geometrical approach is most useful here in view
of the need to relate them to Escher’s graphical work.

Geometrical Properties
of Möbius Transformation
A Möbius transformation maps a complex number Z
into another complex number W, each of which
requires a two-dimensional plane for its geometrical
representation, in which it is represented by a point. A
curve CZ in the Z-plane is thus a set of points, each of
which is mapped by the Möbius transformation into a
point in the W-plane, and the set of transformed points
in the W-plane together defines another curve CW ; this
process can be called a transformation of the curve.
Such a transformation preserves certain of the proper-
ties of the curve, and it is these invariants shared by CZ

and CW that are of interest to us here.
To visualize the effect of this transformation in the

complex plane, it is helpful to consider some special
cases of the Möbius transformation in (4).

● translation: W = Z + B (where A = D = 1; C = 0)
● scaling: W = |A|Z (where B = C = 0; D = 1; A real,

positive)
● rotation: W = Z exp( j � A) (where B = C = 0;

D = 1; |A| = 1)
● inversion: W = 1/Z (where A = 0; B = C = 1;

D = 0).
The geometrical effect of the first three on a curve

can be visualized in a straightforward manner; the last
operation can be viewed as a reflection in the unit circle.
The utility of these special cases lies in the fact that they

serve as building blocks for any Möbius transformation,
which can be expressed as a concatenation of these ele-
mentary operations; thus W in (4) can be arrived at by
the following sequence of transformations:

Z → CZ → CZ + D → 1/(CZ + D)

→ [(BC – AD)/C]/(CZ + D)

→ [(BC – AD)/C]/(CZ + D) + (A/C)

= (AZ + B)/(CZ + D) = W.

The Möbius transformation of a curve in the complex
plane has several useful properties of which the fol-
lowing three are particularly relevant here.

● The transformation maps circles (and hence
straight lines, which are a special case of the cir-
cles) in the Z-plane into circles in the W-plane.
[Hence the appearance of the lines in a Smith
chart, representing the transformation of constant
Re[Z] and Im[Z] curves by the Möbius transfor-
mation in  (1)].

● The transformation is conformal, meaning that the
angle between two curves CZ1 and CZ2 (defined as
the angle between tangents to those curves at their
point of intersection) in the Z-plane remains unal-
tered, both in magnitude and in sign, upon trans-
formation to the W-plane.

● With appropriate choice of distance metric, the
length of a geodesic curve between two points Z1
and Z2 in the Z-plane is the same as that between
their images W1 and W2; Euclidean metric is not
such a metric.

Proofs, examples, and applications of these properties
can be found in cited works [16] and [19] and elsewhere.

It is clear that the first two properties can assist in
keeping the shape of some figure recognizable follow-
ing a transformation, while the third can provide the
scaling in the Euclidean plane where the distance is not
invariant. Those are the two essential requirements
mentioned in “Tessellations Constructed by Transfor-
mations” for the construction of tessellations represent-
ing infinity. We focus on the third property and the
distance metric required for invariance to understand
the distance and size scaling in Escher’s work. 

Hyperbolic Distance Metric

Definition of a Distance Metric
The distance d(Z1, Z2) between two points Z1 and Z2 is
defined as the length of the shortest path or curve join-
ing the two points. The curve having the shortest
length between two points is called a geodesic, which

The Smith chart is a graphical aid for
carrying out Möbius transformation.
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is a generalization of the concept of a straight line from
Euclidean geometry. The length of a curve, in turn, is
defined as the integral of (i.e., the summation over) the
elementary lengths between successive points along
the curve, each separated from the previous one by an

infinitesimal distance. Finally, the infinitesimal distance
between two points can be defined in the usual Euclid-
ean manner, because in the infinitesimal limit, all
spaces become essentially Euclidean [20]. The resulting
distance metric has the properties intuitively expected
of a distance, namely

● nonnegativity: d(Z1, Z2) ≥ 0 for all Z1, Z2
● identity: d(Z1, Z2) = 0 if and only if Z1 = Z2
● bilateral symmetry: d(Z1, Z2) = d(Z2, Z1) for all

Z1, Z2
● triangle inequality: d(Z1, Z3) ≤ d(Z1, Z2),+

d(Z2, Z3) for all Z1, Z2, Z3
● continuity of d(Z1, Z2), ensured by its one-to-one

correspondence with real numbers.
It is easy to see that the Euclidean distance metric

remains invariant under the operations of displace-
ment and rotation; it also remains invariant under the
operation of complex conjugation (W = Z∗), which can
be interpreted as reflection in the real axis. By contrast,
as shown above, a Möbius transformation is composed
of scaling and inversion in addition to translation and
rotation, and as a result, in general, it does not leave the
Euclidean distance between two points invariant.
Instead, one of the invariants of the Möbius transfor-
mation is a cross-ratio defined as: 

(W1 − W3)(W2 − W4)

(W1 − W4)(W2 − W3)
= (Z1 − Z3)(Z2 − Z4)

(Z1 − Z4)(Z2 − Z3)
, (5)

where W1, W2, W3 , and W4 are the images of
Z1, Z2, Z3, and Z4, respectively, under the transforma-
tion. Therefore, a distance metric based on the cross-
ratio, or any monotonic function thereof, would be
invariant to the Möbius transformation. Moreover,
because the distance metric is dependent upon the
geodesic, which in turn is governed by the rules of
geometry laid down in the space, it is necessary to
introduce a different space wherein the geometrical
rules are different from the Euclidean. Hence the need
for a non-Euclidean space.

Non-Euclidean Geometry
Elementary school level geometry is called Euclidean
geometry, in honor of Euclid of Alexandria (circa 300
B.C.), who authored Elements of Geometry, a treatise on

geometry, that is apparently the most widely read book
in all of science, mathematics, and technology in the
history of mankind. Little can be said definitively about
Euclid, as the earliest surviving copy of this work, writ-
ten in Latin by Plonus, dates from around 900 A.D., 12
centuries after Euclid (indeed, of the 15 books or chap-
ters contained in the Elements, the last two seem to be
later additions and not by Euclid). Euclid consolidated
the geometrical knowledge of his times by giving it an
axiomatic structure, wherein all results are deduced
from the smallest possible set of a priori postulates.
Such a minimal set consists of five Euclidean axioms,
which basically postulate the existence of a straight
line, continuity, a metric of distance, the congruence of
angles, and parallel lines. The fifth postulate, the pos-
tulates of parallels, can be stated in a number of alter-
nate forms that are equivalent (i.e., deducible from each
other), in one of which it specifies that there exists a
unique line that passes through a given point P and is
parallel to a given line L.

Following Euclid, over a period of over 2,000 years,
there is a long history of efforts by mathematicians,
from Archimedes to Legendre, to further reduce the set
of Euclidean postulates, with Euclid’s fifth postulate
receiving the most scrutiny in an attempt to deduce it
from the other four.  Only in the 19th century did it
become clear that 1) the fifth postulate is not a conse-
quence of the other four, 2) it is also not essential to the
internal consistency of geometry, and 3) its replace-
ment by alternative postulates can result in a perfectly
self-consistent geometry. Such geometries are called
non-Euclidean, and there are two distinct varieties of
them, depending on the replacement selected for the
fifth postulate. If the number of lines passing through
P and  parallel to L is zero, the geometry is elliptical (or
Riemannian), in which the sum of the internal angles
of a triangle is greater than 180°. If the number is two
or more, the geometry is hyperbolic, wherein the sum
of the angles of a triangle is less than 180°.

Perhaps the easiest way to illustrate and compre-
hend the non-Euclidean geometry and in that process,
demonstrate the existence and consistency of its
axioms, is by constructing a model of a non-Euclidean
geometry that borrows from the already familiar
Euclidean geometry. In the following, we present only
one from among the many possible models and for
only the hyperbolic variety of non-Euclidean geometry,
which will be required for later discussion.

Poincaré’s Open Disc Model 
of Hyperbolic Space
To construct the new geometry, we need objects that can
serve as embodiments of the concepts of points, lines,
and planes, and to which a set of self-consistent postu-
lates can be applied; a minimal set consists, for example,
of the Euclidean axioms, which basically postulate the
existence of a straight line, continuity, a metric of

The hyperbolic distance between two
points is invariant under a Möbius
transformation.
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distance, the congruence of angles, and parallel lines. The
last postulate, the postulate of parallels, is however, not
essential for self-consistency and can therefore be violat-
ed to obtain a new geometry. These objects can be select-
ed from the Euclidean world itself, and many alternative
choices are available. One of the choices is that of points
in the interior of a unit circle,  leading to the so-called
Poincaré open disc model of hyperbolic geometry. 

In a Euclidean plane, wherein each point can be
specified by a complex number �, consider a circle of
unit radius with its center at the origin. We designate
the interior of this circle as hyperbolic plane, and the set
of all points with |�| < 1 in the open unit disc as hyper-
bolic points (h-points). Next, consider a Euclidean circle
(having a center C and a radius R) that is normal to the
unit circle, i.e., it intersects the unit circle at a right angle
at P and Q, their points of intersection (by symmetry—
if the circles are mutually orthogonal at P, they are also
orthogonal at Q). We designate the set of all h-points on
the interior segment of any such orthogonal circle as a
hyperbolic line (h-line), as shown in Figure 6; each
choice of the location of C and magnitude of R gives rise
to a different h-line. Given two h-points �1 and �2, there
is a unique Euclidean circle that passes through them
and is at the same time normal to the unit circle; hence
there is a unique h-line through two given h-points. The
Euclidean postulate on angle congruence is ensured by
retaining the Euclidean measure of an angle between
two lines. These definitions meet the first four Euclid-
ean postulates, including the existence, continuity, and
unlimited extendibility, of a line (toward P and Q, which
are not part of the line, because they are not h-points). 

Finally, we consider the fifth postulate concerning
parallel lines. Two h-lines are parallel to each other if
they do not intersect, i.e., have no h-point in common.
Since more than one h-line can be drawn through a
given h-point �3, each of them nonintersecting with a
given h-line passing through �1 and �2, it is clear that
in this model, the number of parallel lines passing
through a given point and parallel to a given line is
greater than one, which is the distinguishing character-
istic of hyperbolic geometries.

Testing line segments for congruence requires first
having a distance metric. In the hyperbolic space,
requiring that the distance metric satisfy the conditions
listed in the previous section leads to a natural metric,
to be defined in the following.

The Hyperbolic Distance Metric
The hyperbolic distance dH(�1, �2) between two h-
points �1 and �2 (i.e., the length of the h-line joining
them) is different from the Euclidean distance dE

between two Euclidean points �1 and �2. Indeed, dH

can be defined in terms of the Euclidean distances of
each of the points �1 and �2 from the intersection points
P and Q of the orthogonal Euclidean circle mentioned
earlier (caution: P is the limiting point approached

when the h-line �1�2 is extended toward �1, while Q is
the limiting point when it is extended toward �2); then
the hyperbolic distance metric, obtained by the proce-
dure outlined previously, is as follows:

dH(�1, �2) = loge

[(
dE(�1, Q)

dE(�2, Q)

)(
dE(�2, P)

dE(�1, P)

)]
, (6)

where dE denotes the familiar Euclidean distance
between two complex numbers, defined as
dE(�1, Q) = |�1 – Q|. These Euclidean distances can be
explicitly evaluated for the open disc model, and after
their substitution, the hyperbolic distance between two
points �1 and �2 can be expressed solely in terms of the
two points as

dH(�1, �2) = 2 tanh−1
∣∣∣∣

�1 − �2

1 − �1�
∗
2

∣∣∣∣ . (7)

This definition of the hyperbolic distance between two
points satisfies all of the properties expected of a distance
metric listed previously. Moreover, it is invariant under a
Möbius transformation, because the distance in (6) is a
monotonic function of a cross-ratio, as defined in (5).

In the Smith chart, the same cross-ratio invariance
and distance metric are manifested in many ways, such
as in the radial VSWR scale employed, and are used in
certain geometrical constructions and for defining the
measure of variance between two different impedances.
In the special case where one of the two points is at the
origin, the radial distance of the other point from the
origin is given by

Figure 6. A hyperbolic line in the unit circle.
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dH(0, �) = 2 tanh−1� = loge

(
1 + |�|
1 − |�|

)
. (8)

This is identical, to within a scale factor, with the def-
inition of the VSWR (in decibels) on a uniform lossless
transmission line terminated in a load with reflection
coefficient �. As a result, the VSWR scale in decibels,
provided with the Smith chart, is essentially a scale for
the measurement of radial distance from the origin in the
hyperbolic metric. Moreover, (7) can be viewed as a gen-
eralization of the VSWR definition and quantifies the
distance between any two reflection coefficients. Such a
measure of distance has been employed in microwave
engineering in a number of situations, such as for mea-
suring the distance between two impedance values of a
switching diode [21] or defining the unilateral power
gain of an active device in a lossless embedding [18]. 

Circle Limit IV Analyzed with
Hyperbolic Distance Metric
Returning to Circle Limit IV, we can now measure all
the figures appearing in the drawing, including those
that lack bilateral symmetry. When the individual fig-
ures are rotated, the parts farther from the origin suffer
greater shrinkage due to the crowding of the hyperbol-
ic scale toward the periphery, and this causes the
apparent asymmetry in the figures. 

For the purpose of illustration, we will select just
one feature, the wing span of the angels, for compari-
son. Table 2 shows the polar coordinates of the wing
tips for a number of angel figures, measured with ref-
erence to each other. The wingspan is then calculated
from the hyperbolic metric in (7) and is also listed in
the table. The results show that the dimensions are
identical to within the accuracy attainable in a wood-
cut, and allow us to conclude that the figures are
indeed congruent. Circle Limit IV is therefore just a reg-
ular tessellation when measured with the hyperbolic
metric, in which individual tiles are rotated.
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TABLE 2. Measurements on features of
figures in Circle Limit IV.

Coordinates of Wing Tips

Figure Left Wing Right Wings    Wing Span
in decibels

Angel #1 0.515 � 0◦ 0.515 � 60◦ 10.0 dB

Angel # 2 0.515 � 0◦ 0.81 � 13◦ 10.5 dB

Angel # 3 0.815 � 0◦ 0.87 � 11◦ 9.5 dB

Angel # 4 0.887 � 0◦ 0.887 � 9◦ 9.5 dB

Angel # 5 0.815 � 0◦ 0.91 � 8◦ 10.5 dB

Dimensions in hyperbolic distance metric deduced from polar coordinates in the unit
circle and rounded to the nearest half decibel.


