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Thermal  Noise in Nonlinear Resistive  Devices 
and its Circuit  Representation 

Abstmct-The major developments,  since  the  Nyquist  theorem, in the 
study of thermal noise in linear and nonlinear  dissipative  devices are 
briefly summarized. Then  the author’s recently  established  theorem 
for  calculating thermal noise  in  biased,  nearequilibrium,  nonlinear re- 
sistive  devices is discussed, and examples of  its use are presented. Based 
on the  theorem, an equivalent  circuit  model  for representing the  noise 
in such devices is proposed, and is applied to analyze  the  behavior of 
nonlinear  resistors in such  applications as heat  engines  and refrigerators. 

NOTATIONS 
(x) Ensemble average  of x. 

i Time derivative of x. 
VA , iA Total  instantaneous value of a voltage, current. 
VA , IA Ensemble average  of VA , iA . 
v,, ia Fluctuation component of VA , iA . 

X 
- Time  average of x. 

I. INTRODUCTION 

D ISSIPATION of energy, fluctuations  due to random 
noise,  and nonlinearity of characteristics are three fea- 
tures of electrical and other systems with  much in com- 

mon:  they occur in all systems of practical interest,  they are 
abhorred and diligently avoided in many systems (such as in 
communication channels) while carefully exploited in others, 
and they are deeply interrelated  through  thermodynamic con- 
siderations. The  connection between dissipation and fluctua- 
tions has  now been known for several decades: fluctuations 
provide the mechanism for energy dissipation, and dissipa- 
tive systems at finite temperatures are subject to thermal fluc- 
tuations.  The Einstein relationship between diffusivity and 
mobility, and the Nyquist theorem of thermal noise, are a 
manifestation of this connection.  The  connection with non- 
linearity,  although less apparent and less  well studied, has 
nevertheless been firmly established by some recent work [ 11, 
[ 21. This paper brings out  one aspect of this connection, by 
discussing the thermal  fluctuations  in nonlinear dissipative 
systems. 

Specifically, this paper has three primary purposes (listed 
below under  items 2 to 4); in the process it also serves  an  ad- 
ditional, secondary purpose (given in item 1): 

1)  To  outline  the major developments in the  literature  on 
thermal noise, both in linear and in nonlinear systems. 

2) To describe, in electrical engineering  language, a theorem, 
recently derived by the  author,  for calculating thermal noise in 
a class of nonlinear resistive  devices. 

3) To propose  an  approximate noise equivalent circuit for 
such nonlinear resistive  devices  based on the theorem. 
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4)  To give examples of the use  of the theorem  and of the 
equivalent circuit. 

The background and the need for each of these four objec- 
tives is briefly summarized in  the  next  four paragraphs. 

The  study of fluctuations  in  the form of Brownian motion 
(1828) is almost as old as Ohm’s  law (1826).  (For an early 
history of the subject, see some reprints  in [ 31.) A rigorous, 
quantitative  study of thermal noise may however be taken to 
begin with the publication of two papers by Nyquist [4] and 
Johnson  [5] in 1928, a hundred years after Brown  observed 
Brownian motion. These papers contain Nyquist’s derivation 
of the fundamental  theorem on thermal noise, and Johnson’s 
experimental verification of that theorem.  In the half century 
elapsed since, the understanding of the subject, as well  as the 
generality of the basic results, has been enlarged by a number 
of investigators. Some of those advancements of engineering 
interest are summarized here in  outline  form  (in  Section  II), as 
such a collection is not available  elsewhere. 

Perhaps the most restrictive among the assumptions required 
in  the derivation of  Nyquist’s theorem is that of system linear- 
ity. As many devices  of practical interest are nonlinear, at- 
tempts have long been made to extend  or generalize the Nyquist 
theorem to nonlinear systems.  Several difficulties were en- 
countered in such early attempts, and are summarized by van 
Kampen [ 61. It has now been known  for over twenty years 
that  the  fluctuation spectrum for an  arbitrary nonlinear device 
cannot be uniquely  determined by the phenomenological char- 
acteristics of the device, and depends also upon  the higher 
order  correlation  functions [ 71. Despite this negative result, 
investigators have continued to look for a method of  calculat- 
ing thermal noise in nonlinear devices,  because  even though a 
rigorous general theorem cannot be found,  an  approximate 
result, or  one  with a restricted range of utility, will  still  be of 
some engineering interest. Several such engineering artempts 
are summarized in Section 11-F. Recently,  the  author derived 
a thermal noise theorem, applicable to a limited class of purely 
resistive nonlinear systems close to thermal equilibrium, on 
which the present paper is based. This theorem,  and its  proof, 
are stated in general thermodynamic language in the original 
paper [ 11. The theorem is restated and explained in Section 
111 of this paper in  the terminology of electrical engineering, 
with the  hope of making it known to  the engineering com- 
munity and accessible to readers with engineering background. 

Electrical engineers  have long had a preference for expressing 
relationships in the form of equivalent circuits, because equiva- 
lent circuits are a convenient short hand for conceptualizing, 
memorizing, and using the relationships they represent, par- 
ticularly for those accustomed to  them. For this reason, an 
approximate equivalent circuit is proposed here for noisy, 
nonlinear, tweterminal, purely resistive  devices  close to equi- 
librium. This equivalent circuit model a) includes thermal 
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fluctuations, b)  approximates  the  electrical  characteristics of 
the resistor at  its terminals,  and c) is thermodynamically con- 
sistent  and  correct.  The need for  such  a  model arises in a wide 
variety of problems. As one  example of pragmatic  interest, 
when nonlinear  resistors are used as detectors of weak, high- 
frequency signals, their  detection  sensitivity and noise contri- 
bution are important specifications,  and  are  most  conveniently 
calculated from an equivalent circuit  model  which  incorporates 
noise. As another  example of conceptual  interest,  the  paradox 
that  a  nonlinear resistor appears able to deliver a  dc signal by 
rectifying the  thermal noise from  a linear resistor in thermal 
equilibrium  (thus behaving as an  electrical version of  Maxwell’s 
demon),  should be resolved  by a correct noise equivalent 
circuit. 

Finally,  this  paper  contains several applications of the  thermal 
noise theorem, and  of the noise equivalent circuit, to nonlinear 
resistive devices. The examples contain  results of interest in 
themselves, provide specific test cases by  which to judge  the 
validity of the  theorem, and serve to illustrate the use  of the 
theorem  and of the noise equivalent circuit. 

11. A SURVEY OF THE LITERATURE ON THERMAL NOISE 
A.  What is Thermal  Noise 

Thermal noise is a  consequence of the discrete  (particle) 
nature of matter  and energy. Most macroscopically observable 
physical variables, such as electric  current,  are  only averages, 
over a large number of particles, of some  parameter describing 
those particles. When observed more precisely, the statistical 
nature of the  macroscopic variables become  apparent  from  the 
fluctuations  in their values around  the average. 

Thermal noise in a physical system is that  part of the fluc- 
tuations  which arises from  the presence of thermal energy in 
the  system. Systems composed of a large number of particles 
have a large number of degrees of freedom capable of storing 
energy. A macroscopic description of the  system  (e.g, specify- 
ing a few phenomenological variables) constraints the energy 
in  only  a few  degrees of freedom;  the energy in the large num- 
ber of remaining degrees of freedom is lumped  together  under 
the heading of “thermal energy.” If there is a coupling be- 
tween  the macroscopic and the  thermal degrees of freedom  it 
must be bidirectional, Le., energy can be exchanged  in  either 
direction  (this is a  consequence of the  quantum mechanical 
rule that every quantum  transition has an inverse with  equal 
probability).  The flow  of energy from macroscopic to thermal 
degrees  of freedom is called “dissipation.”  The flow  of energy 
from  thermal to macroscopic degrees of freedom manifests 
itself as thermal  fluctuations  in  the  corresponding macroscopic 
variables. 

B. Thermal  Noire  Theorem for Linear Systems 
(Nyquist, 1928) 

The  fitst  and  fundamental  result  in the  theory of thermal 
noise is the Nyquist theorem. A highly restricted version of 
this  theorem is stated  in this section,  with the several general- 
izations described in  Section IIC. 

Nyquist’s theorem  states  that  the  spontaneous  random fluc- 
tuations  in  the  terminal voltage (or  current) of an  arbitrary 
Linear resistor  (any  two-terminal  electrical  circuit  with a  purely 
resistive impedance), having a resistance R ,  maintained in 
thermal  equilibrium at  a  temperature T (by means of a  heat 
bath), are independent of such  parameters as its  conduction 
mechanism,  composition,  construction,  or dimensions, and d e  
pend  only  upon the values of R and T i n  the following manner: 

(b) 

Fig. 1. (a) Thwenin, and (b) Norton noise equivalent  circuits for a noisy 
linear oneport resistor in thermal  equilibrium. 

i) The  spectral  density (or  the mean-square value per unit 
bandwidth B )  of the open-circuit  terminal noise voltage u, is 
given  by 

ii) The  spectral  density (or  the mean-square value per unit 
bandwidth B )  of the short-circuit  terminal noise circuit in is 
given by 

iii) The available  noise power (i.e., the noise power delivered 
to a  matched  load, which would be another  resistor of the 
same value R )  per  unit  bandwidth is given by 

P, = kT. (3) 

iv) The noisy resistor can  be represented  by  a Thevenin 
equivalent, consisting of a noise voltage source of rms value 
d m  in  a  bandwidth B and a noiseless resistor R (as shown 
in Fig. l(a)),  or equivalently, by a  Norton  equivalent, consist- 
ing of a noise current  source of rms value d m  and a 
noiseless resistor R (as shown  in Fig  l(b)). 

The  four  statements  i)  through iv) are equivalent and any 
one leads to  the  other three. 

C. Derivation of Nyquist  Theorem 
Nyquist’s theorem can be  proved  in a variety of ways; indeed 

a dozen  “different”  derivations appearing in the literature  are 
cataloged in [8]. Fundamentally, however, the various classi- 
cal derivations fall in one of three groups: 

i) Derivations  based on kinetic  theory [PI-[12], in  which a 
detailed  and specific microscopic model is postulated to de- 
scribe a resistive system. For example, for a metallic resistor, 
the  transport of electrons is described by a model of the scat- 
tering process which is responsible for  the dissipation of 
energy. The  conductance of the system is related to the aver- 
age velocity of the electrons, while the  terminal  fluctuations 
are related to the  random  thermal velocities of the electrons, 
both of  which are found  in  terms of the  parameters of the 
scattering modeL The  requirement of thermal equilibrium is 
then  introduced  by assuming a Maxwellian distribution for 
electron velocities, or  the law  of equipartition of energy, or 
something  equivalent to it. This leads to  the Nyquist relation- 
ship between  conductance  and  fluctuations, regardless of the 
assumed details of the scattering model. 
ii) Derivations  based on Rayleigh-Jeans law [13], [14], in 

which the resistive system under  consideration is placed in 
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contact with another,  known, convenient system such as a 
black-body cavity or a terminated transmission line, for which 
the frequency  distribution of the available thermal power is 
governed  by  Rayleigh-Jeans  law in one-dimensional form,  or 
something equivalent to  it (such as found by counting the 
number of modes on the transmission line connecting the  two 
systems and determining the energy in each mode  from the 
law of equipartition of energy), From the principle of detailed 
balance, there should be no  transfer  of  thermal  power  between 
the  two systems via fluctuations in thermal equilibrium. As a 
result, the noise power available from the resistive system 
under consideration is found. 
iii) Derivations  based on Markovian  transitions postulate 

[1.5], [I 61, essentially  lead to  the fluctuation-dissipation 
theorem, which is a fundamental result in statistical mechanics. 
The dissipative system is described in terms of the  set of transi- 
tion probabilities between the various possible states  that  it 
can attain.  The response of the  system, as it relaxes  back to 
equilibrium from some other  initial  state is found in terms  of 
the  transition probabilities. This response is taken to be  inde- 
pendent of  how the initial state was  arrived at: whether as a 
result of an applied excitation  or  spontaneous  fluctuations; 
this is the so-called  Markovian or Onsager postulate. This 
postulate  thus relates the autocovariance of the  fluctuations 
to  the impulse response of the system, and therefore  the fluc- 
tuation spectrum to  the conductance of the resistive system. 

The  three classes  of derivations of Nyquist’s theorem men- 
tioned above  have an increasing order of generality. Kinetic 
derivations refer to a specific type of electrical conductor, 
radiative derivations prove the theorem for an arbitrary elec- 
trical conductor, while the statistical derivations prove the 
generalized theorem for all linear dissipative systems, elec- 
trical or otherwise. For  the present purposes, the significant 
observation is that  in each derivation, the  two crucial assump 
tions  on which the theorem is based are those of linearity and 
thermal equilibrium. 

D. Generalizations of  Nyquist Theorem 
The Nyquist theorem of Section 11-B is stated  in a form even 

more restricted than  the  one first proved by Nyquist. Several 
generalizations and extensions of the theorem have been estab- 
lished, and are summarized here. The generalizations included 
in  the following are those having some practical or engineering 
implications;  many  others which contribute primarily to the 
elegance or completeness of results are omitted here. 

i )  Generalization to  Arbitrary  Impedance: For a two- 
terminal  network  or device in thermal equilibrium, having a 
driving point impedance Z( f )  = R( f )  + j X ( f )  at frequency f ,  
Nyquist’s theorem is applicable if the device  is  viewed as a 
series connection of a noiseless reactance X( f )  and a noisy 
resistor R ( f )  with the same thermal noise as stated above. 
(Alternatively, the network  admittance may be viewed as a 
parallel combination of a noiseless susceptance and a con- 
ductance with thermal noise.) Consequently, the theorem 
stated as (1) and (3) still holds, while (2) holds with the 
generalization 

ii)  Generalization to Interconnection o f  Impedances: When 
the linear, two-terminal network consists of a number of inter- 
connected impedances, the  terminal noise  voltage or  current 
can also be calculated from a network  representation  in which 

each impedance is replaced by  its noise equivalent, and the 
noise sources are combined by Kirchhoff’s current and  voltage 
laws. This result was analytically as well  as experimentally 
demonstrated by Williams [ 171. 

iii) Generalization to Nonreciprocal  Networks: For a linear, 
multiterminal  network  containing nonreciprocal elements, 
both  the Thevenin theorem and the Nyquist theorem  require a 
generalization. It was shown by Twiss [ 181 that  the driving- 
point  impedance appearing in  the theorems  must be replaced 
by a linear combination of the elements of an  impedance ma- 
trix describing the nonreciprocal network. 

i v )  Generalization to High Frequencies  and Low Tempera- 
tures  (Quantum-Mechanical Correction): The Nyquist theo- 
rem, as stated in (l), cannot of course be  valid at arbitrarily 
high frequencies, because when integrated over all frequencies, 
it leads to an  infinite noise power, sometimes called the high- 
frequency  catastrophe. A quantum-mechanical calculation [ 71 
of the spectral density of thermal noise at a frequency f leads 
to  the replacement of the  factor kTin Nyquist theorem by the 
mean energy per oscillator ( E )  in an ensemble of quantum- 
mechanical harmonic oscillators having a natural  frequency f 
and maintained at  the temperature T given by 

( E ) =  - hf 2 coth (s) 
1 
2 exp ( h f / k T )  - 1 

= - h f +  hf ( 6 )  

where h is Planck’s constant.  In  the limit of hf /kT  --* 0, the 
energy ( E )  tends  to kT, and the classical expression is recov- 
ered. This replacement can be carried out directly in (1) and 
(2)  but  not in (3). The f i i t  term in (6) is the zero-point 
energy of the harmonic oscillator, and  since it cannot be ex- 
tracted  from  the oscillator, it should not be included in  the 
available  noise power. Therefore, in a quantum-mechanical 
generalization of (3), kT should be replaced’ by only the 
second term on  the right 

as emphasized by Weber [ 191. 
v )  Generalization to Negative  Temperature: A themody- 

namical system can attain a negative temperature [ 211 pro- 
vided it satisfies the following three  conditions:  a)  The ele- 
ments of the system are in thermodynamic equilibrium with 
each other, so that a temperature can be defined at all, b)  there 
is an upper limit to  the energy in the allowed states of the sys- 
tem so that negative temperature can be reached with a finite 
energy, and c)  the system is thermally isolated from  those sys- 
tems which do  not satisfy both a) and b) above (or  that  the 
time  required to reach an  internal quasi-equilibrium is small 
compared to the  time  in which appreciable energy is lost to 
or gained from the  outside), so that  the energy of the system 
is steady during  an interval over which the temperature may 
be defined. A positive temperature system is “dissipative” in 
that, according to the second law of thermodynamics, it is 
possible to do work on it, resulting in an equivalent amount 

in  which  the  entire  energy ( E )  may  be formally  treated as being avail- 
’ An alternative  viewpoint,  proposed  by Siegman [ 201, is also possible 

able;  then  the noise power, delivered by  a thermal noise  source to a 
linear system,  would have  an additional part due to the  zero-point  en- 
ergy, and this is held  responsible for the minimum (quantum  mechan- 
ical)  noise of the linear system. 
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of heat being  delivered to it, in a closed  cycle without p r e  
ducing any  other effect. In an analogous manner, the second 
law of thermodynamics allows that work  may be performed 
by a  system at a negative temperature  by  extracting an  equiva- 
lent  amount of heat from it, in a closed cycle  without  produc- 
ing  any other effect.  The  “dissipation” is therefore negative, 
or is  actually  “generation.” The resistance (or dissipation con- 
stant) of the system is therefore also negative.* For a  system 
having a negative temperature T and  a negative  resistance R ,  
Nyquist’s theorem is applicable in all of the  four forms listed 
earlier [ 221. Three of these are  easy to accept because they 
involve only the  ratio  or  the  product of R and T, which is a 
positive quantity.  That  the  fourth form is also applicable is 
evident from  the  fact  that  the “available”  noise power is the 
power delivered to a matched load. For  the negative resistor, 
the matched load is also a negative resistor, and the power 
delivered to this  load  can  be negative (ie., positive power can 
be extracted  from  the  load). Haus  and  Adler [23] have in t re  
duced the  term “exchangeable power” to replace the “available 
power” under  such circumstances. This extention of  Nyquist’s 
theorem is not a mere mathematical exercise  because  negative- 
resistance, negative-temperature  systems  exist physically  and 
have practial  utility. The spin system  in  a  paramagnetic crys- 
tal, an  example of such  a  system, has applications in maser 
amplifiers and the  extended Nyquist’s theorem allows the cal- 
culation of the noise in  such  an  amplifier [241. 

vi)  Generalization to Linear  Dissipative  Media  (i.e.,  Distrib- 
uted  Systems): The  calculation of thermal noise generated  in 
linear dissipative circuits  which are distributed  in  one dimen- 
sion (such as lossy  transmission lines, waveguides, and other 
transmission media) can  be  carried out by  a  direct  and  straight- 
forward  application of  Nyquist theorem to an  elementary 
length of the circuit.  This leads to  the simple result [25] that 
the noise power  spectral  density per unit  length,  generated  in 
the circuit  and propagated in one  direction is 2&kT, where a is 
the voltage attenuation  constant per unit length  due to dissipa- 
tion. A generalization of Nyquist  theorem is required  when 
the noise is generated in a  linear dissipative medium  distributed 
in  three dimensions.  Haus [ 261 has shown that  the  fluctuations 
in  such  media  can be accounted  for  by  adding  a random-noise 
current  source to  one of the Maxwell’s equations (Ampere’s 
law for a dissipative electric medium),  and has  found  the  time 
and space correlations of this  current  source.  The results can 
be  further generalized [27] to anisotropic  and  nonuniform 
media, and  permit the calculation of thermal noise radiated by 
media at uniform or  nonuniform  temperatures. 

vii)  Generalization to an Arbitrary Linear  Dissipative  Sys- 
tem: Nyquist’s theorem is not limited to electrical  circuits 
having electrical  fluctuations  and  electrical dissipation. It is 
applicable to  any  arbitrary  thermodynamic linear dissipative 
system [281 The kinetics of the system are  described by 
means of a g e n e h e a  velocity v and  a generalized force F 
which are related to  each other  through  the Langevin equation 

m - t a V = F  du 
d t  

where m and a are the  inertial  and  dissipational  constants, r e  

r b t a n c e ,  systems with negative incremental resistance, such as tunnel 
‘While a negative temperature system is shown to result in a negative 

diodes, can have a positive  temperature.  Such devices are necessarily 
nonlinear, must be away from thermal equilibrium (Le.. biased) in order 
to reach the incremental negative mistance region, and their no& b 
then binr dependent. The  linear Nyqubt  theorem, as stated in Section 
11-B, does  not apply to these  devices. 

spectively (for example,  due to  mass and  friction). In the ab- 
sence of an  external  force, F represents  a  net  random  force 
arising from  the  interaction of the thermal degrees  of freedom 
with the generalized coordinate x (where dxldt = u). Then it 
follows from  the statistical  definition of temperature T for  the 
system that  the dissipation  constant 

where ~ F ( T )  is the  autocorrelation  function of F ( t )  

OF(7)  = (no) F(T))o.  (10) 

The ( > denotes ensemble  average and the subscript implies 
the absence  of  applied external forces. This theorem  does  not 
make  any  reference to  the nature of the linear system consid- 
ered or  the microscopic origin of a. The  result (9) is a general- 
ization of  Nyquist’s theorem and is called the  fluctuation 
dissipation  theorem. It is applicable to any linear dissipative 
system,  including  electrical circuits. 

viii)  Extention to Nonequilibrium (or Driven)  Systems: 
Most electronic devices of interest are operated  under driven 
conditions, so that an  extension of Nyquist  theorem for non- 
equilibrium  conditions is desirable. Landsberg  and  Cole [29] 
have shown by  rigorous calculations that,  for a  system main- 
tained in steady  state,  the noise current  spectrum can still be 
written  in  terms of the equilibrium  admittance of the  system, 
along with  a multiplicative correction  factor. The  correction 
factor is dependent  both  upon frequency and upon how 
strongly the system is driven. 

E. Attempts at  Generalization to Nonlinear Systems 

Many attempts have been made in the past to derive a result 
similar to Nyquist  theorem  or  fluctuation dissipation theorem 
for nonlinear systems.  Several different  techniques have  been 
used in  these  attempts,  each using a  different  set of  axioms, 
including  those based on a Langevin equation,  a  Fokker- 
Planck equation,  an Onsager-like postulate  for  the regression 
of fluctuations, and the Master equation.  The various methods 
have different  implicit  axioms and subtle  conceptual  problems, 
and  their results are not always in agreement. A sizable amount 
of the  literature  on this  subject has been critically reviewed by 
Lax [30] and by van  Kampen [6]. The following list of some 
of the conclusions from  this  literature will point  out  the diffi- 
culties involved and will hopefully serve as a warning  against 
expecting  a general result of broad  utility. 

i)  For a  nonlinear  function f of a  random variable x ,  the 
quantities (f(x)> and f ( ( x > )  are not necessarily identical. There 
fore,  a  careful attention must be  paid to  the definition and 
interpretation of the phenomenological variables  involved in 
the calculation of  noise in nonlinear  systems [ 61. 
ii) The  phenomenological  characteristics of a system  are 

expressed in  terms of macroscopic  parameters  (such as voltage 
and current) which are themselves  “coarse-grained” quantities 
in which fluctuations have  been  averaged out.  There is no 
fundamental reason  why the  quantitative measures of fluctua- 
tions  (such as the power  spectrum)  must always  be  expressible 
in  terms of the  phenomenological  characteristics of the sys- 
tem [31] .  
iii) The assumption that  either  the  fluctuations  in a physical 

quantity,  or  the  probability  distribution of that  fluctuation, 
follows the phenomenological laws is not always correct,  and 
counterexamples are easily found.  In  particular, the regression 
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of fluctuations may not be identical  with  the  relaxation re- 
sponse of a system for  nonlinear systems [ 321. 

iv) In general, the spectrum of fluctuations  in a nonlinear 
system cannot be expressed in terms of the phenomenological 
variables alone, and requires a more detailed knowledge of the 
system than  just  the  relationship between the phenomenologi- 
cal  variables,  which are only the first-order moments. The 
requisite detail depends on how  the nonlinear system is charac- 
terized. For example, if the nonlinear system is described by a 
second-degree Volterra kernel, then, in the presence of a driving 
force, the first-order correction in the second moment.(i.e., 
mean-square  value) of an  observed quantity is related to the 
third  moment of that  quantity  in equilibrium [ 71. Similarly, 
if the nonlinear system is  described  by the Kramer-Moyal 
expansion of the Fokker-Planck equation,  the  fluctuation 
spectrum is not uniquely determined by the linear phenome- 
nological coefficients alone, and involves  higher order co- 
efficients [ 301 . 

v) The circuit representation of a noisy resistor, such as a 
Thevenin equivalent, tacitly assumes that  the  internal noise 
generation is independent of the load connected across the 
resistor. But the noise generation in a dissipative system will 
depend on  the  constraints  under which the system is main- 
tained, and the load is a form of constraint imposed on  the 
system parameters. As a result, a load-independent description 
of the thermal noise cannot be developed for nonlinear sys- 
tems in general [ 301. 

vi) One encouraging result can  also  be added to the above 
gloomy picture:  The Nyquist theorem is applicable to non- 
linear systems [33] provided the system is at equilibrium, 
the  fluctuations  are small, and the impedance of the system 
is understood to be the small-signal  (i.e.,  linearized part of the) 
impedance at equilibrium. However,  van Kampen [6, p. 1721 
has pointed out  that this result is not rigorously established, 
and is not valid  universally. 

It is clear that, unlike the Nyquist theorem,  any calculation of 
thermal noise in terms of the phenomenological or “terminal” 
characteristics of a nonlinear device  will  have a limited range 
of validity among the family of nonlinear devices. For engi- 
neering applications, this is still acceptable, compared to the 
alternative in which the noise in each device must be separately 
calculated from first principles,  provided the limits to the 
applicability of the results are known. Furthermore, even an 
approximate result will be useful, provided the approximation 
holds well in the  typical circumstances. The remainder of this 
paper is devoted to such a pragmatic goal. 

F. Engineering Calculations of Thermal Noise in 
Nonlinear Resistors 

If the nonlinear system can  be decomposed into constituent 
parts  such  that all the resistive parts are linear, and the non- 
linearity is confined to  the lossless, energy-storing (i.e., purely 
reactive) parts, thermal noise in  the system is easily determined 
through the use of the linear Nyquist theorem  and the con- 
stitutive  equations  (for example, see Anderson [34]).  The 
present interest is therefore focussed on nonlinear resistive  sys- 
tems. From an  engineering point  of view, there is a need for 
a simplified, even if approximate,  method of calculating ther- 
mal  noise in nonlinear resistive systems under  nonequilibrium 
conditions. Only a very  small number of investigators have 
approached  this problem with  such pragmatic goals, and their 
attempts are summarized here. The  limitations of each of 
their results are  also pointed out. Finally, Gupta’s result [ 11 

NOISELESS 
RESSTOR 

Fig. 2. Noise equivalent  circuit for a one-port resistor in thermal equi- 
librium, as proposed by van Nie. 

on  the thermal noise of nonlinear resistors, on which this 
paper is based, is reviewed in Section 111. 

van der Ziel [35 I approached the problem by asking how R ,  
appearing in (1) and (2), should be defined if these  equations 
are to remain applicable to nonlinear resistors.  He considered 
a nonlinear resistor with a dc voltage V across it, a dc  current I 
flowing through it, and having a small-signal admittance y (  f )  
at a signal frequency f, and considered the following possibili- 
ties for Nyquist’s theorem: 

i) 

ii) 

iii) 
- 
v i ( f ) =  4kTB - i ; ( f )  = 4kTB - ly(f)12 (1  IC) 

dV - dV 
dl  dl 

iv) 

v) None of the above. 
These expressions were tested  on individual nonlinear resis- 

tive  devices for which thermal noise has already been separately 
calculated from  the first principles.  van der Ziel thus came to 
the conclusion that while a particular expression may  yield the 
correct result for an individual device, none of the expressions 
considered is  universally  valid, and  therefore v) is the  correct 
answer. 

van Nie [ 361  observed that  the  terminal  properties of a noisy 
linear resistor can be represented not  only by the Thevenin 
model of Fig. l(a),  but also by any other two-terminal net- 
work for which the model of Fig. l(a) is a Thevenin equivalent. 
Of the  infinite  number of such networks, van  Nie selected one 
which satisfies  an additional  condition:  that  the  rms value of 
the noise current flowing through  the noiseless resistor inside 
the model be independent of the  external circuit connected 
across the model terminals. This condition leads to the equiv- 
alent circuit shown in Fig. 2 containing two noise sources 
which are fully correlated  (correlation coefficient = 1 +io). 
van  Nie then  postulated  that  the same model is applicable to 
nonlinear resistors  having a terminal current-voltage character- 
istic given by 

v T = R i T + a i $ ,  R Z O  (12) 

where R and a are constants  (although possibly frequency de- 
pendent),  with  the noiseless linear resistor R in the model re- 
placed by a noiseless nonlinear one. Notice that  the noise 
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Fig. 3. Gunn’s model for a nonlinear,  isothermal,  resistive,  two-terminal 
device. 

sources remain unchanged, with  their magnitudes dependent 
on R but  not a. Such a model for a noisy nonlinear resistor 
has only  one distinguishing feature,  pointed  out  by van  Nie. 
If the noise current flowing through  the noiseless resistor of 
the model is independent of the  termination,  then  the recti- 
fied dc voltage  developed  across the resistor due  to  its non- 
linearity is also independent of the impedance of the  external 
circuit. The  rectification of noise, and development of a dc 
voltage across the noiseless resistor, occurs even in thermal 
equilibrium; however, the second law of thermodynamics can 
now be rescued by  postulating an internal dc source which 
does not depend upon  the  external circuit (as contrasted with 
Gunn’s model, to be discussed next). van Nie’s model suffers 
from a number of shortcomings. 

i) The model assumes that  the Nyquist theorem  continues 
to hold when the resistor under consideration is nonlinear, 
and carries a bias current. 

ii) The noise sources contained in the model are a function 
of R but  not of a ;  i.e., the  nonlinearity of the resistor is 
assumed not  to influence  the noise generation at all. 

iii) The noise current, flowing through the noiseless resistor 
employed in van Nie’s model, is independent of the termina- 
ting impedance  only if the resistor, as well  as the  termination, 
are linear. The model therefore loses its only distinguishing 
feature in the presence of nonlinearity. 

iv)  If the nonlinear resistor, as well as its  termination, are 
linearized in  the neighborhood of their respective operating 
points,  the noise current  through the noiseless resistor in  the 
model will indeed be independent of the  termination. But 
such a linearized model  does not possess any rectification 
property. 

GUM [37] proposed a model for an  isothermal nonlinear 
resistive  device which is somewhat similar to  the model pre- 
sented  later  in this paper. Gunn’s model is shown in Fig. 3, 
and is described here with a little paraphrasing in  the  interest 
of clarity. The model employs four essential circuit elements: 

i) gl(f, V T )  is the small-signal conductance of the device, 
which is a function of frequency f and of the  dc component 
VT of the  terminal voltage UT. 
ii) gl(0, V T )  is the zero-frequency value of gr(f, VT) ,  and 

therefore equals the incremental  dc resistance dIT/d  VT ,  where 
IT is the  dc  component of the  terminal  current iT. 

iii) in is a noise current source, having a mean-square value 
per unit bandwidth given by 

consisting of two parts, the first of which is spontaneous  and 
the second is  dependent on  the dc terminal voltage VT,  and 
g2 is  given by 

iv) ID is a dc  current  source, given by 

where $ / E  is the mean-square value of the noise  voltage at  the 
device terminals per unit bandwidth, and Is is a “spontaneous 
dc  current.”  Gunn gives neither a general expression for Is 
nor an algorithm for finding it, although  he does calculate it 
for a special  case in which the device is connected across a con- 
ductance that is equal to gl (f, 0) in a narrow  bandwidth B and 
infinite at all other frequencies, and for  this special  case 

- 

As a generalization of his method of calculating Is, this current 
source must be calculated for a given termination by requiring 
that  the model satisfy the second law of thermodynamics. 

In  addition,  the circuit model shown in Fig. 3 includes an 
infinitely large inductor  for choking signals  of all frequencies 
and an infinitely large capacitor  for blocking dc, in the  top and 
bottom halves of the model, respectively. Gunn’s paper does 
not show or  mention  such low- and high-pass Titers explicitly, 
but his discussion implicitly assumes the presence of these (or 
some other equivalent) ideal filter elements. 

GUM showed that,  to  the first order (i.e., for small VT) ,  his 
model satisfies two thermodynamic principles: the second law 
of thermodynamics and the Onsager reciprocity principle; in- 
deed,  (13b) and (14b) were deduced by requiring that these 
two principles be satisfied.  However,  his model is unsatisfac- 
tory in a number of ways: 

i)  Gunn makes the  distinction  between ensemble averaged 
signals and random  fluctuations by identifying  them with dc 
and nonzero frequencies, respectively. This has the disad- 
vantage that time-varying  signals are choked by the  inductor 
and passed by the  capacitor in the model of  Fig. 3 ,  rather 
than being treated  in a quasi-static manner. 

ii) The model does not reproduce the nonlinear dc current- 
voltage characteristic at  its terminals. Consider, for example, 
an ideal dc voltage source of magnitude VT connected at  the 
terminals of the model. The resulting dc terminal current 1, 
can  be found by solving the circuit equations 

V ,  = (IT - ID) g1(0, VT) 

If Is is a constant  independent of VT (as in (14b)),  the termi- 
nal characteristic in  (1 5) is linear, and if Is is not a constant,  it 
is not known. 

iii) The  spontaneous dc  current source Is is a rather unusual 
element: it flows in  the reverse  (high-resistance) direction  in 
the nonlinear resistive device; it is present even in thermal equi- 
librium;  its value depends not only on  the temperature and the 
current-voltage characteristic of the nonlinear device but also 
on  the temperature and characteristic of the termination across 
the device; there is no explicit expression given for it;  and 
finally, its physical origin is obscure. All of these features 
arise  because GUM  postulated  that  the  current source ID in 
his model is given by (14a). The second term in (14a) can  be 
described to be due  to  the  rectification of terminal noise by 
the nonlinear device. A careful examination of this term shows 
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that  the mere  presence of voltage  fluctuations  at  the  terminals 
of the nonlinear device is sufficient to make it nonzero.  Such 
fluctuations are present even  in thermal  equilibrium, so that 
Gunn’s model has a rectified dc  current  term even  in thermal 
equilibrium.  The  spontaneous  current  source Zs is merely a 
patch to repair that  defect:  it nullifies the rectified current 
present  in  thermal  equilibrium. 

III. NONLINEAR THERMAL NOISE THEOREM 
(GUPTA 1978) 

In 1978, Gupta [ 11  was able to calculate the thermal noise 
in a special  class  of nonlinear  systems,  and  under  some restric- 
tive conditions, entirely in terms of phenomenological  param- 
eters. This  theorem  forms the basis  of the noise model  for 
nonlinear resistors described  in the present  paper.  The original 
paper  should be consulted  for  a  derivation of the  theorem  or 
the precise statement of the axioms  and  approximations  used 
in  the derivation. The  purpose of this  section is to summarize 
only the assumptions  and results of that  thermodynamic  theo- 
rem, and to state  them in the language  of electrical circuits to 
facilitate its use in electrical engineering. 

A.  Assumptions and Approximations 
An explicit understanding of the  constraints  under  which  the 

present  model applies is essential to guard against its incorrect 
use. The  following is a list of the assumptions  from  which the 
theorem is derived. 

Consider  a  thermodynamic  system,  enclosed  by  a  boundary, 
with an opening (or  “port”)  in  that  boundary  through which 
the system is in  contact with the remainder of the universe 
(which  therefore serves as a  “termination”  at  that  port).  This 
system is assumed to satisfy the following  requirements. 

i)  The  system is “classical,” Le., the quantum-mechanical 
effects are disregarded in  the calculation of  noise.  However, 
quantum-mechanical processes with  no classical analog  and 
with  phenomenologically  observable  consequences may go on 
in  the system.  Thus  tunnel  diodes  are  not  excluded  although 
tunneling is a  quantum-mechanical  phenomenon. 
ii) The  system  must be large enough that  a  temperature  and 

an  entropy  can be defined  for the system. 
iii) The  system  contains  within its boundaries,  in  addition 

to energy,  a  physical quantity X, which  can pass through  the 
port of the system,  and  which is conserved, i.e., neither  created 
nor  destroyed  within the system. 

iv) The  system  has  a  uniform  temperature T throughout. 
v) The  system also has  a  uniform value  of Y ,  the  force vari- 

able  conjugate to X in  energy  representation (defied by the 
statement  that YdX is the increase  in  system  energy  accom- 
panying  an  increase of X by dX in  the system). 

vi) The  system is purely resistive. This  means that  the sys- 
tem  does  not  store  any free energy in  the  quantity X, and  any 
energy YdX given to the system is dissipated (i.e., converted 
into heat). This in  turn implies Fa t   t he  excitation  variable Y 
is an  instantaneous  function  of X, the time  rate  of  increase of 
X, but  not of. X itself. Then the  rate of dissipation of energy 
is given by YX.  

vii) The  system is Markovian, Le., its  future behavior  depends 
upon  its  present  state,  and  not  upon  the details of how that 
state was reached. In particular, if the system is perturbed 
from  a  steady  state,  its  response is the same regardless of 
whether the  perturbation was caused  by  spontaneous fluctua- 
tions or by an externally  applied  excitation. 

viii) Small-bias approximation. When an  excitation Y is 
applied, the system may  be  called a  “driven”  system.  From 
assumption vi), the  excitation Y is accompanied by a rate of 
increase  of X, and a dissipation YX.  It is assumed that  the 
excitation is small and the system is not far from  thermal  equi- 
librium, so that  the system  can be described by the equilibrium 
distribution of states  (the so-called canonical distribution). 
ix) Small-fluctuation  approximation. The  fluctuations in 

the system variables (in particular X) are small. This  approxi- 
mation  excludes  systems  which are close to a critical point, 
where large fluctuations  occur. 

The above nine  assumptions defiie  the class  of systems to 
which the thermal noise theorem of [ 11 is applicable, and the 
fluctuations of interest here  are  those  in the  rate of  flow  of X 
through the system port. It is evident that  the  fluctuations  in 
X will  be influenced by the  nature of the  termination  presented 
at the system port. (As an  obvious  example,  for  a resistor in 
thermal  equilibrium, an electrical short circuit at  the terminals 
makes the  fluctuations in terminal  voltage  vanish, while an 
open circuit makes the noise  current  disappear.)  In  addition, 
in a nonequilibrium  system  (such as an electrical resistance 
with  a bias current),  the  termination also determines the driven 
state of the system (i.e., the  amount of  bias), and  therefore 
further  influences the  fluctuations.  In  short,  the  fluctuations 
in the flow rate of X can be  calculated  only after the termina- 
tion of the system is specified. The  following  additional re- 
quirement is therefore  imposed to specify the  termination. 

x)  The  termination  maintains  the  system  in  a fixed, steadily 
driven  state,  with a fiied value  of the  excitation Y .  The require- 
ment of steady state implies that  the  excitation Y is time- 
independent, while the requirement of fiied Y implies that Y 
is deterministic, or  that Y = ( Y ) .  

B. Statement of the Theorem 
With the above  ten  assumptions, the  fluctuation  spectrum of 

X can be calculated [ 11. As the system is assumed to be 
purely resistive, the power  spectral  density is independent. of 
frequency,  and  can be written as the mean-square value (X2) 
normalized to the  bandwidth.b  in which it is measured. De- 
fine a new  .variable i 3 X - (X) which is the  fluctuation  com- 
ponent of X. The  thermal  noise  theorem of [ I ]  shows that 

(x2) = 4kTB[ TJF] (16) 

where P,, is the excess power  dissipation  in the system  when 
a small periodic  excitation y ( t ) ,  having a  zero  time average, is 
superimposed on  the steady  excitation YO describing the driven 
state (i.e., Y = YO + y ( t ) ) ,  and  where  overbar  denotes  time 
average. 

If the system is nonlinear, the relationship  between the ex- 
citation ( Y) and the resulting phenomenological (i.e., ensemble 
averaged) response (X) is a  nonlinear  one,  and  can be expressed 
as a  power series 

( Y ) = c l ( x ) + c 2 ( X ) z  +...  
where the constant c1 describes the linearized response, c2 

describes the lowest  (second)  order  measure  of  nonlinearity, 
and so on.  The  fluctuations  can also  be expressed  in  terms of 
these  system  constants. 

C. Theorem for a Nonlinear Electrical Resistor 
When the system  under  consideration is a  purely resistive, 

nonlinear,  two-terminal electrical device, the  thermal noise 
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theorem (16) can  be restated  in  terms of terminal  current  and same for all members of the ensemble), but will contain a 
voltage. . The choice of the  excitation and response variables random  component.  In view  of the assumption of  small  fluc- 
Y and X must, however, be made carefully to  conform with tuations,  stated in Section 111-A, it appears reasonable to re- 
the assumptions on which the  theorem is  based. For example, place the  dc current Idc in  (1 8) by the ensemble average  of 
the choice .of charge as the conserved  variable X (and  hence the  terminal  current 
current as X and voltage  as Y )  is inappropriate because an elec- 
trical circuit element is by definition electrically neutral and ( u i ) = 4 k T B  (:: - + - I -  : :;.“)I,,. IT = ( i d .  (1 9 )  
does not  store charge at all. A little  thought shows that since 
current flow in a resistor is  caused by the  transport of  charge 
carriers, the electromagnetic momentum of the  current in the 
direction of transport is a conserved  variable  which  can  serve 
as X, while  half the average (drift) velocity of the carriers is the 
corresponding excitation Y .  The  kinetic energy due to drift is 
then X Y ,  and the power dissipated in  the form of heat is XY. 
As the drift velocity is proportional to  the  current,  the choice 
?f Y as the  terminal  current, and the corresponding choice of 
X as the voltage,  is still more direct.  The  thermal noise theorem 
then expresses ( u i ) ,  the mean-square thermal noise  voltage,  mea- 
sured in a bandwidth B, at  the terminals of the resistor at 
temperature T, carrying a steady bias current I&, as 

( u : )  = 4kTB  Pex/(i:)  
_ -  

where P,, is the excess  power dissipation caused by the pres- 
ence of a small, zero time average, periodic signal current is 
superimposed on I&. This can be rewritten  in  terms of the 
terminal  current (I)-voltage ( V )  characteristic of the  nonlin- 
ear resistor as 

Having  established a correspondence  between the thermo- 
dynamic variables X and Y and the electrical circuit variables 
V and I ,  the  implications of the  ten assumptions and approxi- 
mations, stated  in  Section 111-A, can now be understood in 
circuit terms. These include  the  conditions  that  the resistor 
is passive, it  has a small  bias (so as to be near equilibrium), and 
its noise  signal  is  small. In particular, the assumption x) im- 
plies the  restriction  that  the  current Idc through the  nonlinear 
resistor is a nonrandom  dc  current. As this terminal  current 
contains no random noise in  the bandwidth B of interest, while 
the  terminal voltage  does, it is  clear that  the resistor is termi- 
nated in an  infinite impedance, or  that  the noise  voltage 
appearing in ( 18) is the open-circuit noise voltage. 

Strictly speaking then,  the thermodynamic result (18) has 
been established in [ I ] ,  and should be used, only under the 
open-circuit conditions with an ideal current  generator as the 
source of the bias. This is a very  severe limitation to  the utility 
of the result. Therefore, two  additional  assumptions are now 
made, which extend the result to  other termination conditions. 

xi) The first assumption is that  the noise internally generated 
in a nonlinear resistor depends  only upon  the resistor, and not 
upon the remainder of the universe. As a result, once a noise 
model for a nonlinear resistor has  been found  for  one termi- 
nating condition, it applies for  other terminations as well. This 
assumption cannot be established rigorously (indeed, excep- 
tions will exist), and its  utility can be judged only through a 
comparison  between its consequences and  known results. 

xii) The second assumption is a relaxation of the  conditions 
of assumption x). When terminations  other  than  the  open 
circuit are  permitted,  the  terminal  current iT through the 
resistor will no longer be noiseless and deterministic (i.e., the 

With these assumptions, the  terminal noise  voltage ut and 
current i t ,  for a given  bias I T ,  and for any arbitrary value of 
the  terminating  impedance  connected to the nonlinear resistor 
in the frequency range of interest, can be found in terms of 
the open-circuit value  of ut at the same  bias,  as  given in (19). 
To understand this procedure, assume that  the noisy nonlin- 
ear resistor can be represented by some model. As the termi- 
nating impedance is varied at a fixed bias, the values of ut and 
it change, but  the model does not, because the model is  in- 
dependent of the terminating impedance (by assumption xi) 
and  of the noise current it (by assumption xii). Therefore, ut 
and it can be deduced entirely from circuit equations, involving 
the model and the  termination.  The  model, however, can  be 
linearized by virtue of assumption ix)  that  the noise  is  small. 
As a result, only the incremental characteristic of the nonlinear 
resistor need  be known. 

To illustrate the above procedure, consider finding i t  for  the 
case where the  terminating impedance in  the frequency range 
of interest is zero (i.e., the short-circuit case). The short-circuit 
noise current in can be related to  the open-circuit noise  voltage 
u, through the incremental resistance of the device 

For  later convenience, this result will now be rewritten in 
terms of a different parameter characterizing the lowest (sec- 
ond)  order  nonlinearity.  The  quantity fl, defined as 

has the  units of (volts)-’, and serves  as a convenient measure 
of the nonlinearity of a device with  quadratic  nonlinearity.  It 
is identical with the  “current sensitivity” defined for nonlin- 
ear resistors when they are used as  low-level detectors [ 3 8 ] .  
In terms of 0, the mean-square short-circuit noise current can 
be written as 

( i i )  = 4 k T B [ g ( l ~ )  - PITI ( 2 3 )  

where g(IT) is the incremental  conductance of the nonlinear 
resistor at  its “operating  point.”  In analogy with the linear 
resistors, a “noise temperature” may be defined for a nonlin- 
ear resistor as 

t ,  E ( i i ) /4kBg = T [  1 - f l I ~ / g ( l ~ ) ] .   ( 2 4 )  

D. Implications of the  Theorem 
The following five observations on  the nonlinear thermal 

noise theorem will help in understanding its use and  limitations: 
i )  Limiting  Values: When applied to linear resistors, for 
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which @ = 0, the result in  (23) correctly  reduces to  the usual 
statement of  Nyquist’s theorem,  contained  in  (2). It also re- 
duces to Nyquist’s theorem  when  the resistor is strictly at 
thermal  equilibrium, Le., the bias current IT is zero. This 
limiting value is in  agreement  with the result of  Bernard  and 
Callen [33] mentioned  in  Section 11-E. It may also appear 
from (24)  that  the noise  temperature of the device can be made 
zero (or even  negative!) merely by a  proper  choice of the bias 
current IT.  Such is not  the case, because  assumption viii), 
requiring small departure  from  equilibrium (i.e.,  small IT) ,  
invalidates the  theorem  at such large IT values; that  assump 
tion is equivalent to  the  condition  that  the noise temperature 
t ,  be  close to  the physical  temperature T of the nonlinear 
device. 

ii) Bias Dependence of Noise: The  noise spectral density 
in (21) consists of a “linear”  part,  and an “excess” part  which 
contains  the  factor IT .  As the nonlinear  thermal noise theorem 
has been  deduced  thermodynamically,, the microscopic mecha- 
nism responsible for  the “excess” noise is not  prescribed.  A 
survey of the  literature  on  fluctuation phenomena  shows that 
numerous  papers  ‘have  been  published on  the  theory of fluc- 
tuations in nonequilibrium  systems  at  steady  state,  in which 
“excess” noise is proportional to  the square of the  excitation 
applied to  the system. Most of  these  theories were constructed 
in  the  context of  searching an explanation for  the  l/f  mise and 
are therefore based on models  which do not  lead to “thermal” 
noise. These  models typically require the system to be driven 
sufficiently away from  thermal  equilibrium so that  the “ex- 
cess” noise  mechanism (e.g., the heating of the charge carriers 
in a resistor due to  the bias [39]) may become effective. There 
are also some  theories  which attempt  to explain l/f noise as  a 
quasi-equilibrium  phenomenon [40]. The important  point  to 
remember is that  the excess noise  due to these  various mecha- 
nisms, if it is observable, would  be  in addition to  the thermal 
noise calculated here. 

iii) Noise  Cooling by  Biasing: The  noise  temperature t ,  of 
the nonlinear resistor, given by (24), differs from the physical 
temperature T by an  amount  dependent  upon  the bias current. 
In particular, t, is lower than T if BZT/g is positive? which is 
the case for forward-biased Schottky-barrier diodes. This re- 
sult is not surprising [41] , and  has  been  known to microwave 
mixer designers for decades [ 381, [42]. Physically, the condi- 
tion t, < T implies that  thermal energy in  the form of elec- 
trical noise can flow  from  another resistor at  temperature T to 
the  nonlinear resistor also at  the same  temperature T; this is 
the refrigerator action  (discussed  in  greater detail in Section 
VI-B), where the work  required for  the process is derived from 
the  source  supplying the bias I T .  
iu) Lack of Additivity: It is apparent  from  (21)  that, if two 

arbitrary nonlinear devices at  the same  temperature are con- 
nected  in parallel, the mean-square short-circuit noise  current 
of the  combination  cannot be calculated by applying the 
theorem to the I-V characteristic of the combination.  The 
reason for  this failure of the  theorem can be traced  back to  the 
fact that,  in general, the  two nonlinear resistors d.be at dif- 
ferent noise temperatures,  and  there will be a  net  flow of 
thermal  energy  from one to the  other.  The  theorem  does  apply 
provided the nonlinear resistors are so selected that, when 
connected  in parallel-,.. the  current divides between them  in  a 
manner that results in equal- no& temperatures  for  the  two 

ence  directions for UT and iT. 
’Notice  that  the s i g n  of pIT/g is independent of the  choice of refer- 

resistors. An obvious  example of such  a  choice of nonlinear 
resistors is one  where the resistors are alike to within  a scale 
factor  (for  example, devices  having different areas of cross 
section, but  otherwise identical with  each  other).  That the 
theorem is indeed  applicable to this case follows  from the 
scale-factor linearity of (21) with  respect to I .  The  absence 
of additive linearity requires that  the  theorem should be used 
cautiously,  for  example,  when  applied to electron devices in 
which there are two distinct streams of  charge carriers with  a 
net  energy transfer between  them. 

u) Absence of Duality: The  current-voltage  duality in cir- 
cuit theory  [43] is a  consequence of the  duality of Kirchhoff‘s 
voltage  and  current laws, and is a  topological result. By con- 
trast,  the thermal noise theorem is a physical result, not  merely 
a  topological  consequence.  (Thus  Nyquist’s  theorem  cannot 
be derived  from Kirchhoff‘s laws  alone;  its  derivation  requires 
additional results from  thermal  physics,  such as the Boltzmann 
distribution  for  the  canonical  ensemble).  From a thermody- 
namic  viewpoint, the  current  and voltage are two very different 
variables. For example,  in  a  system at thermal  equilibrium, 
electrical currents must  be absent,  but  voltages (i.e., electro- 
static  potential differences) need  not  be;  an  unbiased  semicon- 
ductor p n  junction is a case in  point.  Therefore,  there is no 
reason  for  expecting the  circuit  theoretical principle of duality 
to apply to  the expressions for thermal noise. A  comparison 
of (19) and (21) shows that  duality indeed  does  not  apply. 

IV. APPLICATIONS OF THE THEOREM 
The  purpose of this  section is to illustrate the use of the 

theorem  stated in the previous section. The  theorem will be 
applied to some  nonlinear  electron devices for which the noise 
results have already  been  determined  from  theoretical  models 
based upon f i i  principles and  from  experimental measure- 
ments.  A  comparison  of  known results with the results of the 
theorem will help  us  recognize the range of validity of the 
assumptions on which the theorem is based. 

A. p-n and Schottky-Bam‘er Junctions 
At  sufficiently  low  frequencies  and  low injection levels, the 

ideal semiconductor  junction may be  treated as a  purely resis- 
tive device, described by the  instantaneous  current-voltage 
relationship  [441 

I = Z o  ICxp(5)- 11 

The  conditions  under which this result holds are well docu- 
mented.  From (21),  the mean-square short-circuit noise cur- 
rent  at the diode  terminals  at  temperature Tis 

(ii) = 2qZoB [exp (5) + 11 . 

Equation  (26a)  expresses  the  result as a  function of V; with 
the  help  of  (25)  it can be rewritten in terms of Z as 

(ii>=2q(Z+Zo)B+2qZoB.  (26b) 

This last equation is also the result derived  by applying the shot 
theorem to  the  two streams of carriers of magnitude Z + IO and 
IO crossing the  junction  in  opposite directions, and is experi- 
mentally well established [45]. 

The  two values  of (i;), as calculated by  the  thermal noise 
theorem  and by the shot-noise  model, agree for  arbitrary bias 
current I .  (Of course, the diode characteristics are given by 
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(25) only  under the so-called  “low-injection’’ assumption.) 
This situation is fortuitous and should not be expected in every 
case,  because the theorem  contained in  (21) has been derived 
under the assumption of quasiequilibrium. In  general, the 
theorem will hold only in  the limit of small  bias currents. 

B. Tunnel Diodes 
At low frequencies, the  tunnel diode can  also be represented 

by means of a nonlinear resistor with  instantaneous Z-V rela- 
tionship. Most  physical models of the  tunnel diode yield a 
vary complex Z-V relationship despite  numerous simplifying 
assumptions. For  the present purposes, a sufficiently accurate 
and experimentally verified empirical Z-V relationship is given 
by the following approximation: 

Z=AVe*‘+B[eSV-l] 
- = It, + zjn 

where A ,  B, a, and 0 may be treated as empirical coefficients 
[46], determined by curve-fitting of this  equation to the ex- 
perimental data.  The first term I t ,  on  the right-hand  side 
represents the  tunneling  component of the  total  current, while 
the second term Zjn is the usual junction  current, similar to 
that in (25).  The  tunnel diode may,  therefore, be viewed  as a 
parallel combination of a usual p-n junction and a tunnel  junc- 
tion carrying only the tunneling component of current Itun. 
For small  biases, It, exceeds Zjn,  while for large  biases Zjn is 
much larger than Ztun. In the tunneling regime  of the diode 
characteristic, the noise resulting from  the  tunneling part of 
the  current can be found  from  the theorem discussed. For a 
purely tunneling junction, described by 

Ztun = A V exp (-a V) (28) 

the mean-square short-circuit noise current at  the terminals is 
found  from (21)  to be 

( i i )  = [( 1 - aV) + (1 - aV)-’] 
2kTBZt, 

V 

% 
2kTBZ*, 

V 
[ 2 + a 2 V Z ]  

in the limit of low bias  values. 
The short-circuit mean-square  noise current (ii) in  the  tun- 

neling component Ztun of diode  current can be assumed to be 
pure shot noise and is known to  be 

(i;) = 2qBZt, coth - (23 
both  on  theoretical grounds  [471 and from experimental mea- 
surements [48]. In  the limit of low bias, this can be approxi- 
mated as 

where the  two lowest order  terms  in  the power series expan- 
sion of coth  function are retained. A direct comparison of 
(29) and (30b) shows that  they are identical, provided 

= 15.7 (V)-’ at room  temperature. (31) 

This compares very  well with the value 16.8 per volt for a 
determined by fitting  (27)  to  the experimentally measured 
Z-V characteristics of tunnel diodes [ 461. The results are valid 
only for small V. As a V  approaches unity, (28) shows that  the 
first  derivative  vanishes (this is the onset of negative differen- 
tial resistance region), and (21) cannot be used. 

C. Applicability of the Theorem 
Two related issues  will be discussed in this section:  i) Why 

does the nonlinear thermal noise theorem lead to  the noise in 
semiconductor p-n junction and tunnel diodes, which has tra- 
ditionally been  called shot noise in the engineering literature, 
and ii) for what class  of  devices can the nonlinear thermal noise 
theorem be expected to be useful. 

The f i s t  question requires the  definition of the terms  “ther- 
mal noise” and  “shot noise.” Thermal noise has been formally 
defined [49] as the “random noise  associated with the thermo- 
dynamic interchange of  energy  necessary to maintain thermal 
equilibrium between a system and its surroundings.” There- 
fore, even if a part of the device  is far from  thermal equilibrium, 
the device  noise  can be called thermal noise if it is determined 
primarily by that part of the device  which  is at or near equilib- 
rium. The term  shot noise was initially used to describe the 
noise in an electron  tube arising from the random process of 
thermionic emission. Gradually it became established in the 
literature of probability theory and statistics as the name of 
any random process which can  be expressed as 

s o )  =x h,(t - tn) (32) 
n 

where t ,  are random  points in time, having some specified 
distribution, and h,(t) are real functions of time, having some 
specified dependence on t,. 

For  the present purposes, narrower definitions of thermal 
and shot noise are required which apply to  the  fluctuations in 
the  currents and voltages at  the terminals of a freeelectron 
device.  In order to develop definitions which apply to a wide 
variety of  such  devices, it is necessary to focus on  the  two 
essential features of  all such devices. First,  the  terminal cur- 
rents in the device are caused  by  charge carriers which are 
drawn from a source or pool of carriers in some region  of the 
device. Second, the voltages at the terminals of the device 
produce fields with which the above carriers interact in some 
interaction region of  the device, thereby giving  rise to the 
particular terminal behavior characteristic of that device. The 
fluctuations in the  terminal voltages and currents of the device 
arise from certain stochastic  properties of the carriers, such as 
velocity, which are randomly  distributed among the carriers. 
In the most general  case, these random  distributions will be 
determined by the source region as well as the  interaction 
region of the device. 

The  terms “shot noise” and  “thermal noise” can now be 
defined in terms of the above  device description [ 101.  The 
noise present at the terminals of the device can be  called shot 
noise  when the randomness in  the  stochastic  properties of the 
carriers is determined by the source region  of the device, and 
not by the  interaction region. The  terminal  currents can then 
be  expressed in  the  form of (32), with the  distribution of t ,  
governed by the source region, and the shape of h,(t) governed 
by the  interaction region. The noise at the terminals of the 
device can be  called thermal noise  provided the random  prop- 
erties of the carriers are established in a region  where the 
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carriers are  in an approximate  thermal equilibrium. It is clear 
from  these  definitions that  the  terms  thermal noise and shot 
noise are  not  mutually exclusive; when the  random distribu- 
tion of the stochastic  properties among carriers in the inter- 
action region is determined by the source region (the  two 
regions may even  be coincident), and the carriers remain near 
thermal  equilibrium  throughout,  either  term may be used. 

Finally, it is well to remember  that  the above definitions are 
based only  on an intuitively appealing description of the device. 
To  quote van Kampen [ 3 11, “the distinction often made be- 
tween  shot noise and  thermal noise is vague and of limited 
applicability.” 

The  limitations to  the applicability  and  utility of the  non- 
linear thermal noise theorem will now be pointed  out. In 
thermal  equilibrium,  the  only noise that  a classical system can 
exhibit is thermal noise. Therefore,  for  a device in  thermal 
equilibrium, the Nyquist theorem  determines  the  total noise  of 
the device. By contrast,  when a device is maintained in a non- 
equilibrium state  through biasing, it may (and usually does) 
have other sources of  noise. Therefore,  it is convenient to 
treat the noise in a biased  device  as  being composed of a ther- 
mal part and a  nonthermal  part;  the  thermal  part is that part 
which  arises due to thermal  fluctuations  in a near-equilibrium 
region  of the device. The  nonlinear  thermal noise theorem 
accounts  for  only  this  part, and the device noise calculated 
with its  help is only  a  part of the  total device noise;  it may be 
large compared to  the  nonthermal noise, or  it may be entirely 
masked  by the  nonthermal noise, depending on  the device and 
its biasing. 

In the light of the above discussion, the principal limitation 
in the use of the  nonlinear  thermal noise theorem  for calcu- 
lating the noise in a particular device can now be understood: 
the  theorem  calculates only thermal noise, and  only  in near- 
equilibrium devices. Thus  the  theorem  cannot be  used to 
determine  the noise in a  semiconductor p-n junction  diode 
reverse  biased  well into avalanche, because this noise is pre- 
dominantly  due to  the  random,  nonequilibrium (i.e., non- 
thermal) avalanche process; the  thermal  fluctuations  in  carrier 
velocities outside  the avalanche region have little  effect on  the 
total device  noise [ 501. By contrast, the noise  in a space-charge 
limited (SCL)  diode, which  is ultimately  thermal  in origin [ 5 1 1 , 
[52], cannot be calculated  by applying the  nonlinear  thermal 
noise theorem  directly to  the  terminal current-voltage charac- 
teristic of the device, because the device must be  biased far 
away from  equilibrium  in  order to reach the SCL regime,  while 
the  theorem applies only to near-equilibrium systems 

V. EQUIVALENT CIRCUIT FOR NONLINEAR RESISTORS 
WITH THERMAL NOISE 

For  a linear  system,  the  knowledge of the mean-square noise 
voltage under  open4rcuit  conditions  (or with some other 
known termination) is sufficient for calculating the noise volt- 
age or  current  for all other  terminating  conditions,  and  for  the 
construction of an equivalent circuit,  through the use of 
Thevenin or  Norton  theorems: As these  theorems  do  not apply 
to  nonlinear  networks,  a noise model for  nonlinear resistors 
cannot be deduced  from  the  results of the previous section. 
Instead, the equivalent-circuit model proposed here is found 
inductively, by first  making  some reasonable postulates with- 
out (I priori justification, and then examining their conse- 
quences  for validity. The  model thus  found is approximate, 
and has a  limited range of utility.  Furthermore,  the  model is 
not  unique,  and simplicity is an important  criterion for select- 
ing it  from among the alternatives. 

I 

CONWCTANCE G(VT) 
NOISELESS NONLINEAR 

Fig. 4. Proposed n o i e  equivdent circuit model for a nonlinear reaista, 
employing a noise current source, a noiseleg  conductance, and non- 
random, dhipation-controlled, current sourcea. 

A. Proposed Noise Equivalent  Circuit 
The noise equivalent circuit for  a  nonlinear  resistor  must 

reduce to  that for linear resistors, shown  in Fig. 1, in the limit 
of zero nonlinearity. It can,  therefore, be found  by  a  suitable 
extension of the linear  circuit of  Fig.  1. The  extension pro- 
posed here is shown in  Fig. 4, which  contains  two  more  circuit 
elements  than  the  linear  circuit.  The  four  circuit  elements 
appearing in the proposed model of  Fig. 4 are defiied as 
follows. 

Let the voltage and  current  at  the  terminals of the  nonlinear 
resistor  (and the model) be UT and iT,  respectively. Their en- 
semble averages 

VT E ( U T )  and IT E ( i ~ )  (33) 

are then  the  “bias voltage” and  “bias  current,” while the noise 
voltage and  current, defiied by 

ut E UT - VT and it E iT - IT (34) 

have zero ensemble averages. The bias current  and voltage are 
functionally  related  through  the  nonlinear  terminal  character- 
istic of the  nonlinear resistor. 

As an aid  in understanding  how  the noise model is con- 
structed, consider first a  hypothetical case  in  which there is 
no net flow  of  noise power. The expressions for bias current 
and voltage should reduce  to some simpler form  in  this special 
case, and will be denoted  by IC and VC, respectively. The 
nonlinear  functional  relationship  between IC and VC is some- 
times called the  “cold device characteristic” in the  jargon of 
microwave detector engineering, to distinguish it  from  the 
ITVT relationship which applies in the presence of  noise 
power transport. This cold characteristic can be expressed as a 
Taylor series around  the origin 

(35) 

As in  Section 111-B, and in writing the  nonlinear  thermal noise 
theorem as (23),  the interest  here will be confined to small 
values  of Vc, or to  the  nonlinear resistors  with the lowest 
(second)  order  nonlinearity, so that  the  terminal charac\teristic 
can be written as a quadratic. This quadratic may be expressed 
in  terms of two parameters describing the  nonlinear resistor: 
the  incremental  conductance g( Vc) ,  defiied as f l c / d V c ,  and 
the  current sensitivity ~ ( V C ) ,  defined by (22).  The  terminal 
characteristic  can,  therefore, be written as 

IC = d o )  Vc[ 1 +KO) Vcl (36a) 

or,  alternatively, as 
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where the higher powers of the dimensionless quantity (PV,) 
have  been  neglected. 

Although the temperature is not explicitly included as an 
argument, the parameters g( VC) and P( VC) are obviously de- 
pendent on  the  temperature of the  nonlinear resistor. The 
nature of this  dependence is not of immediate  concern  here, 
because the model developed here is for use at a single tem- 
perature;  the parameter values are those applicable at  that 
temperature. 

The proposed model of Fig. 4 consists of the following cir- 
cuit elements, each controlled by the value of the  terminal 
voltage or  current as follows: 

i)  The noiseless nonlinear conductance G(V,) represents a 
resistive circuit element having the nonlinear terminal charac- 
teristic of (35). As (36b) suggests, this circuit element can be 
thought of as being composed of two  separate elements con- 
nected in parallel. The first is a noiseless linear, but  controlled, 
conductance g(VT),  equal  to  the incremental  conductance of 
the nonlinear resistor at its quiescent operating  point (defined 
by the bias) 

(3 7) 

The second is a noiseless controlled  current  source IQ(VT),  
intended to account for  the remainder of the quiescent current 
through G (  V,), and is thus given by 

IQ E IT( VT) - VTg( VT) 

= -O(V,) ZTVT (38) 

with the help of (36b), where higher order terms in OV, have 
been neglected. The source ZQ is, therefore, a controlled cur- 
rent source, controlled by the power dissipation Z,V, due to 
the phenomenological parts of the terminal current and 
voltage. 

ii) The  deterministic  current  source IR represents the recti- 
fication of  noise power by the nonlinear resistor. If the average 
power dissipation due to  the noise parts of the  terminal volt- 
age and current is denoted by P, 

P, E (irvr) (39) 

the  current source IR is defined by the equation 

ZR =DPn (40) 

in accordance with the  detector  current sensitivity interpreta- 
tion of p. Clearly, ZR is also a controlled  current  source, con- 
trolled by  the noise power dissipation. 
iii) The random  current  source in is the only noisy element 

in the model, and therefore  accounts  for  the  thermal noise 
generated in  the  nonlinear resistor. Its mean-square  value  de- 
pends upon the bias, and is  given by (23). If necessary, it  can 
be written in terms of V,, after  substitution from (36), as 

(ii) = 4kTBg(O)[ 1 + p(0) V,]  (4  la) 

or alternatively, as 

(i;) = 4 k T B g ( V ~ ) [ l  - P(V,) V,] (4 1 b) 

where  again the higher powers of (PV,) have been neglected! 
For  the sake of brevity in subsequent  work, the  two dissipa- 

tion-controlled current sources ZQ and ZR would be combined 
into a single phenomenological current  source Zp, defined as 

‘Note that the nonlinear  thermal noise  theorem written in  the form 
(41a) with  the help of approximations, is identical with (13a). 

IT T 1 

L 1 

Fig. 5 .  Terminal  current-voltage  characteristic for a nonlinear  resistor 
in the presence of noise power  transport. 

Zp IQ + ZR 

=B(V,) [Pn -ZTVTI.  (42) 

In  order  to develop some understanding of the above equa- 
tions, and thus of the model, consider the determination  of 
the  terminal current-voltage (ZT-VT) characteristic for  the 
nonlinear resistor as predicted by the model. The characteristic 
given by (35)  or  (36) applies only  in  the absence of  noise 
power transport, Le., for Pn = 0. The effect of Pn on  the 
characteristic follows from the model and (42) 

I T = ~ V T + I ~ = ~ V T + P ( P ~ - I T V T ) .  (43) 

This can be solved for 1, to yield 

IT = ( g V ,  + PPn)/(I + PVT) (gV, + Bp,)  ( I  - PV,) (44) 

after neglecting the higher‘powers of OV,. In  the absence of 
noise  power transport,  this reduces to  the cold characteristic 
(36b) as expected,  and is shown schematically in Fig. 5 .  With 
a net noise power delivered to  (or by) the  nonlinear resistor, 
the characteristic shifts as indicated in Fig. 5. Such a shift of 
characteristic due to detection is an  experimentally observed 
fact  for diodes [38, fig. 2.91) .  

B. Condition of Validity 
The proposed model for nonlinear resistors is  clearly ap- 

proximate, having a limited range  of applicability. It applies 
only  for “small” terminal voltages, such that the second-order 
terms in  the dimensionless quantity OUT can be neglected. The 
condition of validity of the model can, therefore, be explicitly 
written as 

(PVd2  < .  1 ( 4 5 4  

and 

This condition  has already been invoked in (36b),  (38),  (41b), 
and (44). The need and significance of this condition is best 
understood by examining its several consequences. 

The first consequence of the condition is that  the model is 
valid only if the  transported noise power P, is “small.” This 
condition can be expressed quantitatively, by recognizing that 
the noise source in is uncorrelated  with  allexternal noise sources 
which may be connected at the terminals of the nonlinear re- 
sistor. As a result, the average noise power delivered by this 
source  must be positive, or 

( in  < 0. (46) 
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NONLINEAR LINEAR 
RESISTOR CRCUIT 

7 I 

I I 
Temperature TN Temperature TL 

Fig. 6. A nonlinear resistor at  temperature 'T&, connected  across an 
isothermal, linear, two-terminal resistive circuit  at temperature 2''. 

Replacing in by it - gVt, and using (39) and (45b) leads to  the 
result 

Pn c g/B2 - (47)  

A second consequence of the  condition ( 4 5 )  is that  the ter- 
minal current-voltage characteristic of the  proposed  model 
does not display an  incremental negative resistance within  the 
range of validity of the modeL In  the absence of noise power 
transport, the  terminal characteristic of the  model is given  by 
(36b),  and describes a passive element if g is positive. The  in- 
cremental  conductance aZ/a V for a  fixed P,, , found  from (44), 
is also positive when ( 4 7 )  holds. 

A  third  consequence of the  condition of validity is that the 
incremental  conductance g can be defined  in ( 3 7 )  without  the 
need to account  for  the P,, dependence of current-voltage 
characteristic, as in (44). It follows from (44) that 

+ terms  with second and higher powers  of BV,. 

Expressed alternatively, the  incremental  conductance g can be 
treated as a  function of either Zr alone, or V, alone,  with an 
error  which is only of second order  in BVT. 

C. Thermal  Noise in Circuits  Containing  Nonlinear Resistors 
The equivalent circuit of a noisy nonlinear  resistor is useful 

for calculating noise voltages and  currents  in  circuits  containing 
such  a resistor. An illustrative  example of this calculation is 
presented  here;  its  purpose is to illustrate the use of the equiv- 
alent  circuit, to explore  the validity of its consequences, and 
to obtain  some  results  needed  in  the  next section. 

Consider a  circuit  in  which the  nonlinear  resistor is connected 
across an  arbitrary but  isothermal,  nearequilibrium,  linear, re- 
sistive network.  (The  isothermal  requirement is introduced so 
that a single noise temperature can be ascribed to the linear 
circuit.) This circuit is represented  in Fig. 6, where the  non- 
linear resistor has been replaced by its noise equivalent circuit, 
while the  remainder of the linear  circuit has  been replaced by its 
Norton equivalent. The  nonlinear  resistor is characterized  by 
three  parameters:  the  incremental  conductance  at  the  operating 
point, g (in m h o s ) ;  the  detection sensitivity fl  (in  volts-');  and 
the  temperature TN (in Kelvins). The linear circuit,  shown  here 
in Norton equivalent form, is also characterized  by  three param- 
eters: the short-circuit signal current Zs (in  amperes),  the  linear 
Norton  conductance gL (in  mhos),  and  the noise temperature 
of the  isothermal linear circuit TL (in Kelvins). In  order to keep 
the following analysis tractable,  two further restrictions  are im- 
posed on  the circuit under  consideration.  First,  it is assumed 

that  the linear  circuit  and the  nonlinear resistor are connected 
electrically but  not  thermally.  Such  a  condition can indeed be 
approached  in  practice  by  a  suitable coupling. This assumption 
allows the  heat flow and  the  thermoelectric  effects to be ig- 
nored; to include  those processes would  require  a  considerably 
more  detailed  model than  the  purely electrical  description at 
the terminals, as used here. Second, it is assumed that the en- 
tire  circuit is close to equilibrium. This condition  holds when 
the power flow between  the resistors is small. This in turn im- 
plies that each of the  two excitations which cause the power 
flow, namely the  temperature  differential (TL - T N )  and'the 
current  source Zs, is small in  magnitude. This assumption  per- 
mits the  thermal noise current in the linear  resistor to be 
determined  by  the Nyquist relationship ( 2 ) .  

The  circuit described above will now be analyzed to deter- 
mine the values of the  terminal voltage and  current,  and the 
noise power  transported  between  the linear circuit  and the  non- 
linear resistor. Kirchhoff s current law yields 

i T = g V T + i n + I p = - g L U T + i l + Z S .  ( 4 9 )  

Taking the ensemble average on  each side of the  equation,  and 
using (42) ,  gives 

IT = g VT + B(Pn - VTZT) = -gL V' + 1s (50) 

and  subtraction of (50) from ( 4 9 )  gives 

it = gVt + in = -gLUt + il. (51) 

The  terminal noise voltage and  current  are  found  from  (51) as 

U t  = 0 1 -  in) / (g  + gL 1 and i t  = (gLin + g i M g  + gL) 

( 5 2 )  

so that 

Pn E ( v g t > =  [ g ( i : ) -  gL ( i i > ~ / ( g + g L ) ~  (53) 

where il and in have been assumed uncorrelated.  From ( 2 )  and 
(23)  

( i :  ) = ~ ~ B T L ~ L  ( 5 4 )  

and 

(i i)= 4 k B T ~ [ g -   i r B ]  (55) 

where B is the effective  bandwidth over  which noise power 
transport occurs. Upon  substitution  in  (53),  the  net noise 
power delivered to  the nonlinear  resistor is given by 

Pn = 4 k B g ~  [g(TL - TN)  + BIT TNI / (g  + gL12 

= MT' - T N )  + BTN(ZS - gL VT)] /f12e (56) 

where 8 is a quantity  with  the units of temperature, defrned as 

8 E ( g  + ~ L ) ~ / ( ~ ~ B ~ L B ' I .   ( 5 7 )  

Equations (50)  and (56) provide three  relationships  among the 
three  unknowns IT, V,, and P,,, and can be  solved for  them. 
Thus VT is the  solution of the  quadratic  equation' 

Although  the  model  validity b limited by  the  .plumption  that h@a 

dratic tenn is retained during the circuit analysis  stage.  The purpo8e 
ordes term8 in BY- are negligible,  there is no inconsistency if the qua- 

of this retention win become apparent in (72).  None of the  intervening 
d i s c d o n 8  are materially  affected  by t b  retention, and the quadratic 
terms in (58) and (64) may be  ignored, if d h d ,  to  yield resulta correct 
to  the T i  order  in BY,. 
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Of the  two  roots of the  quadratic  equation (58), only  one lies 
in the region of validity of the model, def ied by the  inequality 
(45a), for small values  of the two excitations: the  current  source 
Is, and the  temperature  differential (TL - TN).  For  example, 
if TN < 8, the  acceptable  root is given by 

(59) 
Substitution of this root in (50) and (56)  determines  thevalues 
of IT and P,, respectively. The  solutions  found q e  obviously 
implicit, because g,  B, and 0 are functions of V,. 

The values  of V,, l+, and P, determined above can  now be 
used to show that the  model does describe the  expected prop- 
erties of a  nonlinear  resistor  and  does  not  violate  any  thermo- 
dynamic principles. To demonstrate this, consider  the follow- 

i) If the  nonlinear resistor is biased by  an  ideal  current  source 
Is, both gL and il vanish. From  (52),  the  terminal noise volt- 
age and  current are 

ingspecialcases: ’ 

it = 0 Ut = - in /g(  VT). (60) 

The bias current IT is equal to  the source  current Is, and the 
bias voltage is related to  it by the relationship 

IT = g(VT) V,/(l + BV,) 

‘“g(Vir) VT(1 - BVT) (61) 

which is identical with (36b),  the  terminal characteristic of 
the  nonlinear resistor. 

ii) If the  nonlinear resistor is biased by  an  ideal voltage 
source, the noise quantities  are 

it = in ut = P, = 0 (62) 

while the bias w e n t  and voltage are still related to each 
other  by (61). 

iii) If the  nonlinear resistor is connected across a  linear  one 
at  the Same temperature,  both Is and ( TL - T N )  vanish. Then 

V,= 0 IT = 0 and P, = 0 (63) 

from (591, (SO), and  (56), respectively. 
iv) If the  nonlinear resistor is connected across a  linear  one 

at  a different  temperature,  only Is vanishes. Under this condi- 
tion,  elimination of IT between  the two equations  in (50) 
shows that  the  terminal voltage VT is the  solution of the qua- 
dratic  equation 

g L ( B V ~ ) 2 + ( g + g L ) B ~ ~ + B 2 P n = o .  (64) 

For  reasons  explained in  connection with (59), only  one of the 
two  solutions of the  quadratic is acceptable,  and is given by 

This shows  that 

B V - 2 0  accordingas P, 5 0  (65b) 

or that BV, and P, have opposite signs. The sign of BV-, in 
turn, depends  upon  the  temperature  differential.  For Is = 0 
and TN < 8, it is clear from (59) that BV, and (TL - TN) also 
have opposite signs. These resultsagree with the observed [37] 
and expected behavior of nonlinear resistors. For  example, if a 
diode is connected across a  resistor that is hotter  than  the 
diode, P, and @V, will be positive and negative, respectively; 
i.e., the noise power will flow from  the  hotter resistor to  the 
colder  diode,  and  the  diode will develop a dc bias voltage in 
the reverse direction  and carry a  current  in  the  forward  (lower 
resistance)  direction. This result can also be deduced  by draw- 
ing a  load  line  in Fig 5. 

v) If the  two  temperatures TN and TL are  unequal,  the  non- 
linear resistor  may  function as a  heat engine. If, in addition, 
the  source Is is also present, the  nonlinear resistor can serve as 
a  refrigerator. These cases are  examined in detail  in  Sections 

vi) At the  terminals of the  nonlinear  resistor,  there  exists  a 
simultaneous  flow of two  separate conserved quantities: the 
extensive variable X (discussed in  Section IIIC) and the ther- 
mal energy. Their flow rates are the  terminal voltage V, and 
the noise  power P,, respectively. In the limiting case  of  very 
small  values, these  two  fluxes  can be expressed as linear func- 
tions of two forces, which can be identified by fist determin- 
ing S, the  time rate of increase of entropy in the circuit. En- 
tropy increases in  part because the signal power Z,V, is 
dissipated in the  nonlinear resistor at  temperature T N ,  and  in 
part because the noise  power Pn is transported across a small 
temperature  differential ( TL - T N ) ,  so that 

VI-A and -B. 

S‘“ VTIIT/TNI  +Pn[(TL - T’)/T&I. (66a) 

The  quantities  in [ * I  in (66a) are intensive variables, and  are, 
therefore, the  thermodynamic  forces  conjugate to  the fluxes 
Vr and P,, respectively. From (SO) and (56),  the fluxes can 
be linearized and expressed as a  function of the forces 

The  coefficients of the forces in the cross-terms are equal, 
demonstrating  that  the Onsager reciprocity  relations are 
obeyed. 

vii) If the linear conductance gL is frequency  dependent,  an 
analysis similar to that presented in  this  section  can be carried 
out,  with  the  total noise power Pn replaced by  the integral, 
over  all frequencies, of the noise power per unit  bandwidth 
delivered to  the nonlinear resistor. 

It is apparent  from  the above that  the  model of the  nonlinear 
resistor behaves in  the  manner  expected of a  nonlinear  resistor 
embedded  in  a  linear  circuit. Similarly consistent  results  are 
also found  for  a  circuit  consisting of two  nonlinear resistors 
and  a bias source. Finally, the  model has another desirable fea- 
ture: it does  not  make an artificial distinction  between small 
signals and noise. Consider, for  example,  a  nonlinear  resistor 
connected across a series connection of two ideal voltage 
sources having a  dc voltage vd, and  a small-signal voltage u,. 
This situation can be viewed in two different ways. If u, is 
treated as noise, then V -  = V,, and Ut = u,. On the  other 
hand, if u, is treated as a signal, then V- = Vd, + u,, and 
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Fig. 7. One  possible arrangement for using a nonlinear resistor as a 
heat engine. T2 > TI. 

U t  = 0 with  condition  (45), either treatment results in the same 
expressions for the  current and  power  flow in the nonlinear 
resistor. The  choice of the model of Fig. 4  for  a  nonlinear 
resistor was  based on these  positive results. 

VI. APPLICATIONS OF THE NOISE EQUIVALENT CIRCUIT 
The  purpose of this  section is to present two examples to 

illustrate  the use  of the proposed  noise  equivalent circuit for 
nonlinear resistors. 

A .  Nonlinear Resistors as Heat Engines 

By definition, a  heat  engine is a mechanism for  extracting 
work  by  allowing the flow of heat  energy  from a higher to a 
lower  temperature  body. If Qz is the heat  energy  lost  by  a 
source at  a  temperature T2,   Ql  is that received by  a sink at  the 
lower  temperature T I ,  and W is the work  done  by the  heat en- 
gine (see Fig. 7 ) ,  then  the first law  of thermodynamics  states 
that 

Q2 = Q 1 +  W (67) 

and the second law  of thermodynamics  in  Carnot's  theorem 
form  states  that 

A net  transport of thermal  energy  from  one  body to another 
occurs  provided the two are at different temperatures.  This 
transfer of thermal  energy  between  them  takes place  via heat if 
the  two bodies are in  thermal  contact,  and via  noise power if 
they are in electrical contact. If there is a  net noise power 
transfer, a  nonlinear resistor can  deliver dc power  by noise  rec- 
tification  and  therefore serves as the electrical analog of a heat 
engine [ 5 3 ] .  

A number of different arrangements  can  be  envisioned for 
connecting a nonlinear resistor as a  heat  engine.  Perhaps the 
simplest is the  one  in  which  the  dc  power  generated is delivered 
to a load consisting of a linear resistor, the load resistor is placed 
in thermal  contact  with  the  heat  source,  at  the higher tempera- 
ture TL, and the nonlinear resistor is placed in  contact  with  the 
heat  sink  at the lower  temperature TN as indicated  in Fig. 7 .  
This  arrangement is described by the circuit of  Fig. 6, which 
has already been analyzed in Section V C ,  provided Zs is 
equated to zero. 

It is clear that  the work  done  by the heat engine per  unit  time 
is 

which is necessarily  nonnegative  for  a passive load (gL > 0). 
The  dc  voltage V, developed across the load  has  already  been 
solved for  in  Section V-C, and is given  by (59)  withZs  equated 

to zero 

where the series converges for small temperature differentials 
(TL - T'). The  net noise power delivered by the linear resis- 
tor, given by (56), is 

The  efficiency of the heat  engine is thus given by 

- W g L ( f l v d 2  8 q = - =  ( 7 2 )  
Qz  g(TL - TN) - ( f l v ~ )  gL TN' 

Notice that  although  the  numerator of the expression  for 1) in 
( 7 2 )  is a  second-order quantity  in ( f l v ~ ) ,  the  entire  expression 
is not, and  therefore  the  efficiency 7) can be calculated  correctly 
to first-order terms. To emphasize this, ( 7 2 )  can  be rewritten 
as follows, with  the aid of (58) and  after  the  substitution of 
Is = 0: 

v =  -0 VT 
1 + (g/gL) + PVT * 

( 7 3 )  

Since the  heat engine is constructed so as to make P, > 0, it 
follows  from (65b)  that f l V ~  is negative, and q in ( 7 3 )  isindeed 
positive. 

It will  now  be demonstrated  that, within the range of validity 
of the model, the efficiency q calculated  from ( 7 3 )  does not ex- 
ceed the Carnot efficiency, in  accordance  with the second law 
of thermodynamics.  From ( 7 3 ) ,  1) depends  on f l V ~ ,  which in 
turn depends  on (TL - T N )  as in (70) .  While the efficiency, ex- 
pressed as a  function of f l V ~  in (73) ,  appears to be unbounded, 
the validity of the model is limited by (45a)  to small  values  of 
( - f l V ~ ) ,  and  therefore to small (TL - TN).  The  assumption that 
TN < 8 is implicit in  the choice of the sign in (59). If, in  addi- 
tion, TL is also restricted such that (TL + TN) < 28, it follows 
that 

T L - ~ < O - T N < ~ ~ .  (74) 

Further,  since  the  geometric  mean of two positive numbers is 
bounded  from  above  by  the  arithmetic mean 

~ ( T L  - 8)C-O +-(e- TN).  g gL 
gL g 

(75) 

After  addition of 28 - TN,  and then division  by (TL - TN)/ 
(22'' - TN),  on  both sides, this inequality  can be transformed 
into 

The  left-hand side of this inequality is recognized  from ( 7 0 )  to 
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be the first-order  approximation to -@V& for small (TL - TN). 
As -BV, is a positive quantity, (76) can be written as 

From (73) it follows that 11 is less than the  Carnot efficiency 

An alternative  arrangement for  the  heat engine would be one 
in which the  nonlinear resistor is placed in contact  with  the  heat 
source  at  the higher temperature  and  the linear load resistor is 
placed in contact  with  the sink at  the  lower  temperature.  In 
this case, both  the  dc and the noise power flow from  the  non- 
linear resistor to  the linear resistor.  The  thermal energy de- 
livered to  the sink is 

Q I  = -pn (79) 

and since Pn is negative, it  follows  from  (65b)  that PVT is  posi- 
tive. The  efficiency of this heat engine may also be similarly 
calculated. 

B. Nonlinear  Resistors as Refrigerators 
By definition,  a  refrigerator is a  heat engine operated  in  re- 

verse, wherein work is done to make  thermal energy flow "Up- 
hill," from  a  body  at  lower  temperature to one  at a higher 
temperature. If the  thermal energy extracted  from  a  body  at 
temperature T1 is Ql , and  an amount Q2 is delivered to another 
body  at a higher temperature T2,  with  the aid of work W per- 
formed  on  the refrigerator (see Fig. 8), then  the first law of 
thermodynamics  states  that 

Q2 = Q 1 +  W (80) 

and  the second law of thermodynamics (in Carnot's theorem 
form)  states  that 

Once again, a  nonlinear  resistor can be  used as a  refrigerator, 
since the flow of thermal energy can take place electrically via 
noise. 

Once  again,  several different  refrigerator  configurations  are 
possible, only  one of which is analyzed in  detail here. In this 
arrangement,  the  nonlinear  resistor is placed in  contact  with 
the  heat  source  (the lower temperature reservoir from which 
heat is to be extracted) as indicated  in Fig. 8. The  work re- 

quired is provided by an ideal  dc  current  source, of magnitude 
I&, connected in parallel with two resistors. Obviously, the 
situation is still described by the circuit  model of  Fig. 6 ,  but 

It is clear that  thermal energy will be transported (as noise. 
power)  from  the  lower  tempemture  resistor to the higher tem- 
perature  one provided the noise temperature of the nolinear 
resistor falls below that of the linear  resistor, Le., from (24) 

with TL < TN. 

TN( 1 - @IT/g) < TL TN. (82) 

If TL is sufficiently close to TN, this condition can always be 
satisfied by  a small bias current  for  which  the  model is appli- 
cable.  However, this condition is not sufficient for  ensuring 
that  the linear  resistor cools, because the  source IS causes a 
dissipation in  the resistor. The  source delivers the work W 
per unit time, given by 

w = I ,  v, (83) 

of which  a  part is dissipated in  the  nonlinear resistor 

pdc =IT vi" 
and  the  remainder  in  the  linear  resistor 

W - Pdc = gL VT. (85) 

As a  result, the linear resistor is cooled if and  only if the noise 
power  transported  away  from  it exceeds the dissipation  in  it 

Pn > W - pdc. (86) 

The  purpose of the  remainder of this  section is to show that 
this condition can indeed be satisfied,  and  thus to find out  the 
minimum  dc bias needed to bring about  the refrigeration. 

With substitutions  from (56) and (85), theinequality (86) can 
be written as 

(87) 

where (#V~)itself is a  function of the  current  source IS and 
the  temperature  differential (TN - TL), as given  by (58). Elimi- 
nation of (BV,) between ( 5 8 )  and (87) shows that  the  condi- 
tion  for  cooling  can be met  only  for small temperature  differ- 
entials,  which  meet the  approximate  condition 

The efficiency of the refrigerator  can also be calculated, and 
is found to satisfy the  requirement  (81) of the second law of 
thermodynamics. 

VII. CONCLUSIONS 
The highlights of a half century of engineering literature  on 

thermal noise have been surveyed in  Section 11. The  author's 
own work  on  thermal noise in  nonlinear resistor has been  sum- 
marized in  Section 111, and  illustrated  in  Section 1V by examples. 
The equivalent circuit  model  for  a noisy nonlinear  resistor, 
developed and  illustrated  in  Sections V and VI, respectively, is 
the principal new work  reported here. It must be emphasized 
that  the  model is approximate,  and has a  limited range of valid- 
ity. It has allowed the  solution of some  interesting problems, 
and will hopefully fi id applications  in  the  solution of st i l l  
other problems. 
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One of the  important questions to ask about  the model is 
whether the results of Section 111 are necessary, i.e., whether 
the nonlinearity  dependence of the noise  source in has a signif- 
icant  bearing  on the results deduced  from the model. As the 
thermal noise theorem of Section 111, embodied in (23), has 
been  used as the nonlinear  replacement for the linear Nyquist 
theorem given in (2), the  question can be  addressed  by replac- 
ing (23) everywhere by (2). This resultsin  the  elimination of the 
TN/6 term  in several equations,  such as (58), (59 ) ,  (70), and 
(71),  but  does  not  materially  influence  the results of Sections 
V  and VI-A. However, the refrigerator action  and  the  inequality 
(87) now become  impossible,  leading to the conclusion that 
the nonlinearity  dependence of noise is essential for  the dis- 
cussion  of Section VI-B. 

The  proposed  noise  equivalent circuit model for nonlinear 
resistor is consistent  with  thermodynamic laws. In particular, 
the model  leads to the conclusion that  a nonlinear resistor 
cannot serve as Maxwell’s demon, as demonstrated  in (63). 
Earlier demonstrations [54] that  a rectifier cannot  become 
Maxwell’s demon  invoke  a “dc  component of fluctuations,” 
and seem  less appealing than  the present  one. 
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