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Fractional Huang’s 
Dynamic Range Hardware New Technique Arithmetic [7] method [8] MRC method 

Moduli 3,7,13,17,19,23, 2043,2045,2047, 2043,2045, 3,7,13,17,19,23, 
29,31,37,41,47, 2051,2053,2056 2047,2051, 29,31,37,41,47, 

53.59.61 2053 2053,2056 53.59.61 

64 bit range look-up 554 6 26 104 
tables 

Binary 0 5 43 13 
Adders (64 bits each) (Total Adder (Total Adder 

bits = 421) 

Comvarators 0 0 6 0 

bits = 674) 

In this table the number of latches required for a pipelined 
application are not provided since in the  onv version methods 
using Binary adders, the binary addition operation may have to 
be broken into several smaller ADD operation to match the 
latency of the slowest arithmetic operation. This in general may 
vary depending on the application. 
ne modulo operation using look-up tables is found to be 

efficient [9] for moduli values up to 6 bits. By using small 

[I21 F. J. Taylor, “Residue arithmetic: A Tutorial with examples,” IEEE 
Computer Mag., pp. 50-62, May 1984. 

[13] c .  H. H u a g  and F. J. Taylor, “A memory compression scheme for 
modular arithmetic,” IEEE Trans. Acourtics, Speech, Signal Processing, 
vol. ASSP-27, pp. 608-611, Dec. 1979. 

[14] M. A. Soderstrand, “A New Hardware Implementation of Modulo 
Adders for Residue Number Systems,” Proc. 26th Midwest Symp. on 
Circuits and Systems, Mexico, pp. 412-415, Aug. 1983. 
A. P. Shenoy and R. Kumaresan, “A pipelined RNS to binary converter,” 
Proc. 29th Midwest Symp. Circuits and Systems, Lincoln, NE, Aug. 1986. 

[15] 

moduli’s it is possible to realize a dynamic range of 64 bits; using 
moduli which are less than or equal to 6 bits, which may be 
adequate for a large number of applications. The Memory com- 
pression scheme reported in [13] may further reduce the memory 
elements in the look-up table implementing a modulo operation 
but requires random logic to implement it. 

v. SUMMARY 

A new technique for RNS to binary conversion using only 
look-up tables is proposed. The technique obtains the binary bits 
of the natural integer from the residues in a bit slice fashion by a 
sequence of base extensions to a modulus which is a power of 2. 
A significant reduction in latency and hardware count is possible 
by choosing an efficient base extension algorithm (11) in place of 
regular MRC. By selecting one of the “in range” moduli as a 
power of two further reduction in hardware and latency is 
feasible. 
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Upper Bound on the Rate of Entropy Increase 
Accompanying Noise Power Flow 

Through Linear Systems 

MADHU S. GUPTA 

Abstract-An upper bound is established for the rate of entropy in- 
crease due to noise power flow in a non-isothermal linear network contain- 
ing n independent noise sources. The bound depends on the net power 
flows to (or from) the noise sources collectively, the lowest noise tempera- 
ture in the network, and the efficiency of a Carnot heat engine operating 
between the highest and the lowest noise temperature occumng in the 
system. 

Consider a linear lossless time-invariant n-port network, 
terminated at each of its ports in a dissipative and noisy linear 
one-port. Such a network may represent, for example, an arbi- 
trary linear time-invariant non-isothermal dissipative network 
with stationary noise sources, in which each dissipative and noisy 
element is represented as a one port, and the remainder of the 
network constitutes the lossless n-port. The termination at the 
j t h  port is completely described, in steady-state and at one 
frequency w ,  by its driving point impedance Z,(w) and its 
effective noise temperature ( U) ,  or equivalently, by the avail- 
able noise power per unit bandwidth, Pa”, ,(@) = kT, (w) ,  where 
k is Bolzmann’s constant. There is some interest [l], [2] in the 
rate of increase of entropy in such a network due to power flow 
between the ports. The increase in the entropy of a heat reservoir, 
used for maintaining a resistive circuit element at a temperature 
T, can be calculated from Gibbs’ equation, A E = TAS, in which 
A E  is the thermal energy received by the heat reservoir, and AS 
is the resulting increase in the entropy of the reservoir [3]. The 
requirements of time-invariance and steady-state exclude cases 
where the rate of increase of entropy is time-varying, and may be 
related to the stability of the network [4]. 
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Let P,”, , ( U )  be the average noise power per unit bandwidth at 
frequency U ,  flowing out of the j t h  port and into the termination 
Z, ( U ) .  From the first law of thermodynamics (energy conserva- 
tion in an isolated system), it follows that 

From the second law of thermodynamics (nonnegative rate of 
entropy increase in an isolated system), it is further known that 

Suitable ideal narrow-band filters can be postulated for arriving 
at these frequency-dependent forms of the thermodynamic laws. 
The inequality in (2) has also been deduced [2] from the proper- 
ties of linear lossless networks, without explicitly invoking the 
second law of thermodynamics, which is not surprising since 
electrical networks are themselves thermodynamic systems, and 
the axioms of network theory (Kirchhoffs laws) are known to be 
consistent with the laws of thermodynamics [5]. It is, therefore, 
axiomatic that the rate of entropy increase is bounded from 
below. 

The purpose of this short paper is to establish an upper bound 
to the rate of entropy increase. This bound will be expressed in 
terms of the following variables. Let Tmax(a) and T,,,,(u) be the 
highest and the lowest temperatures among the noise tempera- 
tures ? ( U ) .  Then the efficiency of a Carnot (i.e., reversible) heat 
engine, operating between two heat reservoirs at the maximum 
and the minimum temperatures, is 

One measure of the overall level of noise power flows taking 
place in the network is the net inflowing (or outflowing) noise 
power, which is half the sum of the power flow magnitudes at all 
ports by virtue of (1): 

This quantity is a function of the lossless n-port network, as well 
as all Z,(U) and ? ( U ) .  The U dependence of the various 
quantities will not be explicitly written in the following. 

The rate of entropy increase can be written as 

n 

G C  
J = 1  

n 

j = l  

since T,,, < T, < T,, 

from (4) ($ - pnet 

This is the desired upper bound, and the principal result of this 
paper. Note that the equality in ( 5 )  holds when all terminations 
receiving noise power are at the minimum temperature (i.e., 
T, = T,,,, for all J such that P,,,, > 0), and all terminations 
delivering noise power are at the maximum temperature (i.e., 
T, = T,, for all J such that Ply,, < 0). 

To understand the physical interpretation of the result, con- 
sider the simplest possible case of a linear lossless two port, 
connecting two noisy linear one ports having two different effec- 
tive noise temperatures Th and 7; at ports 1 and 2, respectively, 
with Th > 7;. Then a flow of heat will take place, in the form of 
noise power e,, from the heat reservoir at temperature Th main- 
taining the noise temperature of the termination at port 1, to the 
heat reservoir at temperature 7; maintaining the noise tempera- 
ture of the termination at port 2. The rate of decrease of the 
entropy of the first reservoir is Pn/Th, while the rate of increase 
of the entropy of the second reservoir is P,,/T,. The net rate of 
increase of entropy of the entire system is, therefore, 

where g, is the efficiency (Th - 7;.)/Th of a Carnot engine 
operating between the two heat reservoirs. The bound on the rate 
of entropy increase, appearing in (S), takes the form 

which agrees with the result in (6). 
In addition to illustrating the physical interpretation of the 

bound found in this short paper, this example also demonstrates 
that, for a two port, the upper bound is actually reached and, 
therefore, a tighter bound cannot be found in general. Based on 
this example, the bound in (5) can also be interpreted as the 
statement that the rate of entropy increase in the given n-port 
system cannot exceed that in a two port in which the termina- 
tions are at the maximum and the minimum temperatures T,,, 
and Tmin, and the power flow equals the net value Pne,. 
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