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Abstract-This paper is a tutorial introduction to the subject 
of conductance fluctuations observed in mesoscopic conductors 
at low temperatures, and the universal conductance fluctuation 
(UCF) theory proposed to explain them. The discovery of the 
fluctuations less than a decade ago has been followed by an 
intensive flurry of research activity, published almost entirely in 
the journals of solid-state physics. This paper surveys the subject 
from the viewpoint of a practicing electron device engineer, 
with bias in favor of intuitive appeal rather than rigor, and 
should be helpful in understanding the primary literature on the 
subject. The nature of fluctuations and mesoscopic conduction 
are briefly introduced. Both theoretical and experimental results 
from the sizable literature on the subject are summarized here, 
emphasizing the characteristics of the fluctuations, the conditions 
under which they are observed, the mechanism of fluctuations, 
and the range of applicability of the UCF theory. 

I. INTRODUCTION 

A. Motivation 

S solid-state electron devices continue to shrink in size, A at some stage they no longer operate in the same manner 
as their larger counterparts, and new features in their behavior 
are uncovered that require a more detailed level of description. 
One such threshold is reached when a classical phenomeno- 
logical description of conductance, useful for larger devices of 
“macroscopic” dimensions, becomes inadequate. Understand- 
ing the nature of carrier transport and fluctuations in such small 
devices necessitates a drastically different conceptualization, 
and many new phenomena and principles are encountered in 
this study [1]-[ll]. It is difficult to predict if and which of 
these phenomenon will be significant in the new devices that 
are yet to come. However, it appears certain that, as the device 
size shrinks, the nature of fluctuation phenomena will become 
increasingly diverse, and their role increasingly important. 
In fact, the work summarized in this paper indicates that in 
ultrasmall devices, the fluctuations are not merely important, 
they become the dominant feature. 

Fluctuation of mesoscopic conductance, the subject of this 
paper, is a recently discovered phenomenon, unobservable in 
devices of larger sizes. Since it explore previously unfamiliar 
territory, it holds the promise of providing new insights and 
tools to the scientist; it also raises for the engineer the hope that 
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its study might be useful in some new applications and devices. 
Some of the specific motivations for studying conductance 
fluctuations in mesoscopic conductors include the following. 

The fluctuation mechanism discussed here may be rele- 
vant to some new families of nanodevices. 
The conductance fluctuations described here may pro- 
vide an explanation for, and a method for the es- 
timation of, several low-frequency noise phenomena, 
including 1/ f noise and “two-state’’ (or “switching”) 
noise, observed in some types of small devices at low 
temperature. 
The conductance fluctuations discussed here are sensi- 
tive to the specific locations of defects in a particular 
sample of conductor, and can serve as “fingerprints” of 
a particular sample. 
The conductance fluctuations may provide a tool for 
studying transport processes and other physical phe- 
nomenon at a microscopic level, such as single-defect 
migration, which were previously inaccesible or difficult 
to observe. 

B. What Are Mesoscopic Conductance Fluctuations 

It seems reasonable that the study of fluctuations in ultra- 
small devices should begin with the simplest possible electron 
device: a homogeneous sample of conductor. The simplest 
possible electrical characteristic of such a device is its dc 
small-signal conductance. Studies, both experimental and the- 
oretical, have found that the magnitude of this conductance 
fluctuates under suitable conditions (low temperature, meso- 
scopic conductor size), and that the fluctuations are large, of 
the order of the value of the conductance itself. The present 
paper is concemed with this phenomenon. 

Experimental measurements have shown that the transport 
coefficients (such as the conductance and magnetoresistance) 
of mesoscopic conductors depend on extemal parameters (such 
as applied bias voltage and magnetic field) in a seemingly 
random, but reproducible, manner. The value of a transport 
coefficient can also have a large scatter from sample to sample, 
or with time. The fluctuations show some unexpected charac- 
teristics, such as an increase in fluctuations upon lowering the 
temperature, and a universal magnitude of the rms value of 
fluctuations in conductance, independent of its conductance 
value. Further details of the observed characteristics of these 
fluctuations are summarized in Section VI. 
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One of the earliest, and the principal, theory for under- 
standing some of the observed fluctuation phenomena, and the 
only one to be discussed here, is the universal conductance 
fluctuation (UCF) mechanism. The UCF theory is based on 
treating the transport of an electron not as particle transport, 
but instead as the propagation of a wave, having an amplitude 
and a phase, that can show phase-coherent effects such as 
destructive or constructive intereference; the fluctuations are 
simply a manifestations of such quantum intereference effects 
in one-as well as higher-dimensional conductors. Theoretical 
calculations and numerical simulations of UCF have been 
successful in explaining many of the observed features of 
conductance fluctuations in ultrasmall devices under some 
restrictive conditions; e.g., the UCF theory is applicable only 
to small, weakly-disordered conductors (defined as those in 
which G > q2 /h ,  also called the metallic limit) at low 
temperatures. However, UCF theory cannot account for all 
experimentally observed types of fluctuations, implying that 
other fluctuation mechanisms may also be at work, some of 
them mentioned later on in Section VII. Nevertheless, UCF 
theory is a good starting point for the subject, because it 
illustrates many of the mesosopic transport issues, developes 
a universal description with broad applicability, and has had 
some degree of success in developing a theoretical understand- 
ing of the observed phenomenon. 

C .  History and Status of the Subject 

The first experimental observation of the universal conduc- 
tance fluctuations was reported in 1984 by Umbach et al. 
[ 121, who measured magnetoresistance of small gold rings 
below 1 K, and found seemingly random variations with 
magnetic field, rather than the periodic resistance variations 
that they expected. Further measurements [ 131 on temperature 
dependence verified the unexpected result that the fluctuations 
increased as temperature decreased. Theoretical explanation 
for the phenomenon was given independently by Stone [14] 
based on numerical simulation of diffusive transport in disor- 
dered samples, and by Al’tshuler [15] who predicted the rms 
value of the conductance fluctuations to be q2 J h  based on 
transport theory. Additional theoretical studies by both Stone 
[16] and by Al’tshuler [17] deduced some of the expected 
characteristics of the fluctuations. Many of the theoretical 
predictions were experimentally verified by Skocpol et al. [ 181 
who measured conductance fluctuations over 2; decades of 
amplitude on silicon MOSFET inversion layers of different 
dimensions. Feng et al. [ 191 theoretically analyzed the con- 
duction in a two-dimensional conductor at 0 K, showing that 
the motion of a single impurity can give rise to conductance 
fluctuations with an m s  value of the order of q2 /h ,  and 
proposed it as a possible mechanism for low-frequency l/f 
noise in some low-temperature conductors. 

Although the study of conductance fluctuation in ultrasmall 
devices is less than a decade old, the literature on the subject 
is already fairly large, with several hundred papers on conduc- 
tance fluctuations published in the literature of physics since 
1985. As is typical of the physics literature in a newly devel- 
oping field, many of the theoretical studies are speculative, or 

are concerned with esoteric topics that are of dubious practical 
importance. On the other hand, in an attempt to discover new 
phenomena and concepts, many of the experimental studies 
have been carried out with exotic materials (that are rare, or 
extremely pure), on difficult structures (from fabrication or 
stability viewpoint), and under extreme operating conditions 
(milliKelvin temperatures, several Teslas of magnetic fields), 
whose engineering relevance is difficult to see, at least at the 
present time. The mesoscopic systems and fluctuations consid- 
ered in the literature already span a wide variety. The published 
reports contain numerous experimental and theoretical studies 
of fluctuations in different parameters, as well as in various 
device structures, and include observations of many different 
types of fluctuation phenomena in ultrasmall devices, having 
different physical origins. Work continues on the analysis of 
theoretically predicted fluctuation mechanisms, identification 
of the various experimentally observed fluctuation phenomena, 
and a quantitative prediction of their composite effect in 
individual types of mesoscopic devices. 

D. Scope and Outline of the Paper 
This paper is a survey of some basic ideas extracted from 

the literature, presented at the level, and from the viewpoint, 
of a practicing electron device engineer, with the goal of 
conceptual understanding rather than completeness and rigor. 
The scope of this survey is limited in two ways as follows. 
Experimental studies considered here are biased in favor 
of familiar materials and operating conditions of possible 
interest to device engineers, and the fluctuations in only the 
conductance are discussed, ignoring those in other transport 
properties like magnetoresistance and Hall resistance. Theo- 
retical studies selected for discussion are confined to those 
dealing with universal conductance fluctuations mechanism, 
and based on single-carrier models in which the carrier- 
to-camer interactions are neglected; these introduce more 
complexity but do not alter the major conclusions. 

In the context of mesoscopic conductors, the terms “fluc- 
tuations” and “conductance” have to be properly interpreted, 
and are therefore defined in Sections I1 and 111 respectively. 
Thereafter, Section IV describes the fluctuation mechanism, 
and Section V outlines the calculation of the rms fluctuations 
in conductance, with intuitive rather than rigorous emphasis. 
Theoretical results are presented before the experimental ones 
so as to provide a framework for understanding the effects 
of various influencing variables and the motivations of the 
experiments summarized in Section VI. The distinction be- 
tween UCF and other low-frequency conductance fluctuation 
mechanisms is discussed briefly in Section VII. 

11. THE NATURE OF FLUCTUATIONS 

An electron device engineer, accustomed to the engineering 
literature on noise in existing electron devices, may be sur- 
prised to find papers dealing with conductance “fluctuations” 
that report only a measurement of the entirely determinis- 
tic dependence of the magnetoconductance of a sample on 
magnetic field, with no signs of any fluctuating signals! The 
“fluctuations” that are the subject of this paper are different 
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in several ways: they lack the features of temporal variation, 
irreproducibility, and self-averaging, normally connotated by 
the term “fluctuations.” These differences are briefly explained 
in the present section. 

A. Reproducibility and Time Variation 

The traditional study of fluctuations in macroscopic elec- 
tronic devices considers a variety of noise due to 
a finite temperature (thermal a finite size of energy 
quantum (photon noise), or a finite charge per (shot and 
partition noise). In that context, the term “fluctuation” means 
a random variation as a function of time, and the fluctuating 
quantities are the signals handled by the device, not the char- 
acterstics of the device. (When the device characteristics do 
fluctuate, this can usually be blamed on a fluctuating signal that 
modulates the otherwise invariant device characteristics.) As 
a result, the term “fluctuation” becomes almost synonymous 
with fluctuation of signal” in engineering literature. 
This is not the 

In the literature on mesoscopic devices, the term “fluctua- 
tion,, has been broadly employed to include the following two 
phenomena: 

samples, they are not the sample-to-sample statistical fluctua- 
tions caused by manufacturing variability, which also become 
more apparant as a conductor becomes smaller. Since the 
introduction of impurities in a conductor sample is a random 
process (at least in the present technologies), the number 
of impurity atoms in multiple copies of identically prepared 
conductors will vary randomly, as will the sample conduc- 
tance. With increasing system size (as measured by the sample 
volume, or the average number N of impurities in the sample), 
these fluctuations become relatively less important-the usual 
1 / J N  scaling. The conductance fluctuations in mesoscopic 
conductors, however, have a quantum mechanical rather than a 
statistical origin, and one of their major distinguishing features 
is their unusual scaling with system size, due to the absence 
Of 

Self-averaging is a basic postulate of statistical mechanics 
that applies to an observable characteristic or parameter of a 
system that is extensive (i.e., one whose value is proportional 
to the size of the system, such as the number of impurity 
atoms in a homogeneous sample of conductor). The extensive 
variables are additive: if a given system can be treated as 
a composite of N smaller subsystems, the value X of an 
extensive parameter of the system is the sum of the values 

in conductance‘ 

in which the term will be used here. 

’) a and therefore but xi of the parameter for the constituent subsystems. If xi for 
entirely reproducible, dependence of some device charac- the subsystems are random, then so is the value of for 

the composite system, being a sum of random variables. It 

X / N  becomes an increasingly better estimate of the average 

teristic (e.g., conductance, or magnetoresistance) on some 

change in Some device 
magnetic Or bias and follows from the law of large numbers that, as N increases, 

*) a macroscopically 
(such as conductance) from One Of 

even though their macroscopic 
value (xi) over an ensemble of similar subsystems. More 
specifically, if the distribution of x, is identical in each of the device to 

the N subsystems, then the mean of X is structures are identical. 
Neither of these phenomena involves any temporal variations, 
and both are referred to as fluctuations. Indeed there is no need 
to distinguish between them, because they are not independent; 
we shall see later that these two phenomena are merely 
different manifestations of the same underlying mechanism. 

Conductance variations due to the above mechanism can 
be observed also as fluctuations in time. The conductance 
of a mesoscopic conductor depends on the exact location of 
defects contained in the conductor lattice, and will therefore 
vary with time due to the migration of those defects within the 
conductor. When observed superficially, the time variation of 
the conductance will appear to be spontaneous and random. 
However, at a sufficiently detailed level of description, where 
the motion of individual defects is accounted for, the time- 
variations Of conductance is Of rather than random 
origin. The deterministic nature of these fluctuations becomes 
particularly apparent when a defect in the conductor does not 
migrate in an irreversible manner, but oscillates between two 
states, causing the conductance to vary randomly between two 
reproducible values. The appearance of “randomness” in time 

and arises from our unwillingness to consider the details of 
its origin. granted: 

B .  SelfAveraging 

It is important to point out that although mesoscopic con- 
ductance fluctuations are observed in very small conductor 

( X )  = N ( x )  (1) 

and the fluctuations in X ,  denoted by A X  
a variance given by 

X - ( X ) ,  have 

((Ax)2) = N ( ( x  - (4)”. ( 2 )  

to Therefore, the rms 
the mean 

Of fluctuations in x, 
Of x, is given by 

(3) J ( ( A V )  1 J( (W2)  
( X )  J N  (4 

K -  

being inversely related to the square root of the system size. 
the size of the system (or, equivalently, the ensemble average 
value (x) of the variable) increases, while the size of the 
subsystems remains constant, the fluctuations Ax in the value 
of x become an increasingly smaller fraction of the ensemble 
avarage value (x )  of the variable. This property of x is 
known as the self-averaging property. 

are so -intuitively obvious” that they are apt to be 
therefore depends On Our choice of the depth of examination The self averaging property leads to two consequences that 

for 

1) The likelihood that the variable X ,  measured on a 
particular system, deviates significantly from the average 
value ( X )  over an ensemble of similar systems can be 
made vanishingly small by increasing the system size. 
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2) The average value of a parameter is an adequate descrip- 
tion for a particular member of the ensemble of systems 
if the system is statistically large. 

Lest one might infer that the above does not apply to 
conductance because the conductance of a sample does not 
scale with the sample volume, we emphasize that, when 
viewed appropriately, the conductance of a macroscopic sam- 
ple is an extensive, and therefore a self-averaging, parameter. 
Consider a three-dimensional cubic conductor of sides L. Its 
conductance varies as L, so that if the system size is measured 
in terms of the side of the cube, the conductance is effectively 
“extensive,” and therefore self-averaging. If each side of a 
cubic conductor of conductance g is scaled N times, the 
conductance G of the resulting conductor has a variance given 
by 

(4) 

where the moments of G and g are each defined over their 
respective ensembles. More generally, for a d-dimensional 
conductor with side L along each dimension, it follows from 
Ohm’s law that 

(G) K LdP2 

and the variance of G should scale as 

The conductance fluctuations in the mesoscopic samples, 
that are the subject of this paper, do not possess this self- 
averaging property. Experimental observations summarized in 
Section VI show that for mesoscopic conductors the rms value 
of fluctuations in conductance is independent of system size, 
and can be of the order of the average conductance itself. This 
is a distinguishing feature, characteristic of the mesoscopic 
fluctuations. Indeed, for a d-dimensional conductor to which 
the universal conductance fluctuation theory applies, 

J( ( A G ) ~ ) / ( G )  L ~ - ~ .  (7) 

A comparison of (6) and (7) shows that, for all d < 4, 
with increasing conductor size the macroscopic conductor 
has a more rapid decrease in the normalized rms value 
of fluctuations. The reason for the different size scaling 
of fluctuations in mesoscopic conductors stems from their 
quantum mechanical origin, and the fact that the conductance 
depends not only on the number of imperfections, but also 
their locations; this is clarified in Section IV-B where the 
mechanism and magnitude of fluctuations are discussed. 

The lack of self-averaging leads to two consequences of 
present interest. First, since the fluctuations can be very large, 
a given sample may not be adequately described by the average 
conductance (G) of the ensemble from which the sample is 
drawn-a breakdown of the average description, even when 
the sample size is statistically large. Second, conductance 
fluctuations can be observed even in large conductor samples, 
having as many as 1015 or more atoms, because they are not 
statistical fluctuations implied in (4). However, the sample 
cannot be arbitrarily large, because the relevant physical 

phenomenon (namely the quantum intereference effect) is 
observable only under certain conditions which are met when 
the sample is of mesoscopic size. To understand this, we next 
define the term “mesoscopic.” 

111. NATURE OF MESOSCOPIC CONDUCTION 

The conductance fluctuation phenomenon has been observed 
only in very small conductors, typically with dimensions less 
than a tenth of micron, in the so-called mesoscopic regime. 
The term “mesoscopic” has often been loosely used in the 
literature to describe systems whose size, and properties, fall 
in between those of single atoms and bulk solids. This section 
provides a more careful definition of the term; in the process, 
it answers both how small must the conductor be in order to 
observe the conductance fluctuations, and why must it be so 
small. Thereafter, the conductance of a mesoscopic conductor 
is expressed in terms of the scattering parameters of the 
conductor, treated as a single scatterer. 

A .  Conditions for Observing Mesoscopic Phenomena 
Conductance fluctuations of interest in this paper occur 

when the conductor satisfies the following conditions: 1)  the 
conduction is metallic; and 2) the wavefunction of a carrier 
retains phase coherence in traversing through the conductor; 
and 3) the carrier transport-is diffusive. The implications of 
each of these conditions, and the circumstances under which 
they are met, are briefly summarized here. A more detailed, 
tutorial exposition may be found elsewhere [20]. 

Metallic Conduction: The presence of defects in the 
conductor lattice destroys its periodicity, thus localizing 
the camer wavefunctions and reducing the probability 
of carrier transport from one end of the conductor to 
the other. The large conductance, typical of metals, is 
therefore possible only if the length L of the conductor 
(measured along the direction of carrier transport) is not 
large compared to the coherence length (which is a 
measure of the spatial spread of the wavefunction [21]). 
This .condition is met provided the conductor is only 
“weakly disordered” so that its defect density is not too 
large, and gives rise to a conductance that satisfies the 
inequality G 2 q2 /h .  
Phase Coherence: The wave functions of the carriers 
traversing the conductor loose their phase-coherence 
primarily due to inelastic scattering at time-varying 
perturbations (such as those caused by phonons) in the 
periodic potential of the lattice; i.e., the phase coherence 
length L4 of carriers is essentially the mean free path 
Ai, for inelastic scattering. To retain phase coherence 
requires that inelastic scattering be infrequent during 
carrier transit, which in tum implies that the conductor 
length L should be small compared to the inelastic mean 
free path Ai,. This condition can be met by reducing 
the number of inelastic scatterers (the phonons) through 
lowering the temperature. In particular, the conductor 
length L should be small compared to the thermal 
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diffusion length LT 

LT = JhD/kBT (8) 

over which the thermal energy spread smears out the 
phase coherence of carriers [22]. 

3 )  Difisive Transport: The carrier motion is described 
as diffusive, as opposed to ballistic, when the path of 
the carriers in the conductor is a random walk due to 
scattering. For carriers to suffer numerous scatterings 
during their transit through the conductor, the length L 
of the conductor must be large compared to the mean 
free path A of the carriers. Since the inelastic scattering 
must remain infrequent due to condition (2) above, 
the scattering must be almost entirely elastic, caused 
by defects in the lattice. However, the defect density 
cannot be high due to condition (1) above. To ensure 
the diffusive nature of transport, therefore, the conductor 
length L must be restricted to the range 

A * A,l << L < Ain, I .  (9) 

The elastic scattering becomes dominant (Ael << Ain) 
only at low temperatures, in the so-called “dirty con- 
ductor” regime. 

B.  Mesoscopic Conductance 

pressed in terms of the conductivity U 

The conductance of a macroscopic conductor can be ex- 

G = ( A / L ) a  (10) 

the conductivity in terms of carrier mobility p 

U = nqp ( 1 1 )  

the mobility in terms of a mean free time between collisions 7 

p = qr/m* (12) 

T = m*XFh/h. (13) 

and the mean free time in terms of the mean free path A as 

Here, A and L are the area of cross section and the length 
of the conductor; q,  m*, and n are the magnitude of the 
charge, effective mass, and density of the carriers; h is the 
Planck’s constant, 6.63 x Joule sec; and XF is the Fermi 
wavelength (i.e., the DeBroglie wavelength of the electrons 
at Fermi surface) that is related to the carrier density in a 
d-dimensional conductor by 

n M I/x$. (14) 

An intuitively appealing form of expression for G can be found 
by combining (lo)-( 14); this yields 

unit of conductance. The second ratio is the inverse of the 
length of the conductor, normalized with respect to the carrier 
mean free path. The third factor is the cross-sectional area 
of the conductor in dimensionless form, measured with Fermi 
wavelength as the unit of length. This form of the expression 
for G clarifies the relevant parameters and their natural scales. 

In mesoscopic conductors, the conduction is strongly in- 
fluenced by both the wave nature of the electrons, and the 
negligible number of inelastic scattering events within the 
conductor. The wave nature of electrons allows the possi- 
bility of a constructive or destructive interference between 
electron waves, called quantum interference effects, or the 
phase coherence effects. The infrequent occurrence of inelastic 
scattering in the conductor is essential for these effects since 
such scattering destroys phase coherence; it also makes the 
conductance highly dependent on extemal boundaries and 
terminations, a phenomenon that will be ignored here. Since 
inelastic scattering, which is the source of irreversibility and 
dissipation, does not occur within the sample, the conductor 
behaves very differently from a classical resistor. 

One method of taking advantage of the phase coherence of 
the carriers in calculating the’ conductance of a mesoscopic 
conductor is Landauer’s approach [23], in which conduction 
is treated as a scattering problem, with the transport of an 
electron through the conductor viewed as the propagation of 
an electron wavefunction through a medium. This wave is 
scattered by the disorders in the lattice, and the superposition 
of all scattered waves defines the electron transport. This 
situation is schematically represented in Fig. 1,  where an 
electron suffers multiple scatterings on its way from one end 
of the conductor to the other. Since the wavefunction of the 
electron remains phase coherent as it propagates through the 
conductor, the entire conductor can be treated as a single 
scatterer, quantitatively described by its scattering parame- 
ters (namely, its reflection coefficient R and its transmission 
coefficient T )  and the conductance is expressed in terms of 
these parameters. Detailed consideration shows that, for a one- 
dimensional conductor, when the leads are idealized and are 
included along with the sample, the conductance of the entire 
system can be written as 

This one of the several versions of Landauer’s formula [24]. 
In a multi-dimensional conductor, the electron waves can 

amve at one end of the sample, and leave at the other end, in 
various quantized directions, and follow different paths within 
the sample, suffering many elastic collisions on the way; each 
such possible path of a carrier through the conductor is called 
a “channel,” and is schematically shown in Fig. 1. Since a 
channel connects two modes, one at each end of the conductor, 
the total number of channels Nch can be estimated as follows. 

(15) N c h  N N:ode N (WkF)2(d-1) (17) 

for a d-dimensional conductor, where W is the transverse 
Note that the conductance has been expressed as a product 
of three ratios. The ratio (q2/h)  of the fundamental physical 
constants has the units of conductance, and a value equal to 
0.0386 mS (or the inverse of 25812.807 Cl); it is the basic 

dimension (the “width”) of the conductor, and k~ = 2n/XF 
is the Fermi wavenumber. 

As a carrier proceeds through a particular channel in the 
sample, it suffers numerous elastic collisions, and the overall 
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I I -  -52 
Source 

Reservoir 

Elastic \I 
with Transmission Scatterers 
Coefficient Tij 

Fig. 1. Schematic representation of a two-terminal mesoscopic conductor, 
containing a random distribution of elastic scatterers and connected to a carrier 
reservoir at each end. The trajectory of a carrier starting in the z-th mode at 
the source reservoir and ending up in the j-th mode at the sink reservoir, and 
suffering numerous elastic collisions in between, defines a “channel.” Since 
the electron must be viewed as a wave at this scale, the “trajectory” is entirely 
fictitious, and introduced for conceptual purposes only. 

transmission coefficient of the channel will be a composite of 
the effect of each scattering. Since elastic scattering occurs at 
static lattice defects whose potential does not change with time, 
an electron in a given momentum state, incident at a given 
scatterer, will always be scattered into a specific momentum 
state. As a result, there is a well defined, time-invariant 
transmission through a given channel that can be described 
in terms of the transmission matrix t of the wave amplitude. 
The transmission coefficient for the carrier is denoted by Tij 
for a channel between the i-th mode at the source end and the 
j-th mode at the sink end of the conductor. 

The total current through the conductor is the sum of 
the currents transported through the individual “channels.” 
Since the electrons obey Fermi-statistics, the various channels 
are equally populated, and contribute equally to the current 
transport. The conductance in this case is given by 

G = (q2/h)Tr(ttt) = ( q 2 / h )  CTij 

where Tr represents the trace of the matrix, the dagger 
indicates the Hermitian conjugate, Tij is the transmission co- 
efficient, and the summation extends over all possible channels 
[25]. For a single channel case, (18) obviously reduces to (16). 

IV. CONDUCTANCE FLUCTUATIONS 
The seemingly random variations in the conductance of a 

mesoscopic conductor with extemal fields, with time, and from 
sample to sample, can now be understood. Section IV-A de- 
scribes a physical mechanism, based on quantum interference 
among electrons, as a possible explanation for the observed 
fluctuations. Conductance fluctuations arise from interference 
among electron waves that have traversed the’ conductor along 
different trajectories, thereby suffering different phase shifts 
during transmission through the conductor. As long as there 
are no phase-breaking scattering events, the carriers crossing 
the conductor along different trajectories will have definite 
phase differences among them, and will interefere with each 
other to yield the total current. It is clear that the total current, 
and hence the sample conductance, will be sensitive to any 
changes that influence the phase shift accumulated along a 

trajectory. Magnetic field, electric field, and rearrangement of 
the elastic scatterers in the lattice can each cause a change 
in phase shift, and hence a variation in conductance, that is 
sufficiently complex to be called “fluctuation.” 

To ascertain that the above quantum inerference mechanism 
is indeed responsible for the observed mesoscopic conductance 
fluctuations, it is necessary to examine it for the experimen- 
tally observed features of fluctuations. The two characteristic 
features of the rms value of conductance fluctuations are its 
universality, and its temperature dependence; they are deduced 
on an intuitive, order-of-magnitude basis in Sections IV-B and 
IV-C, respectively. A discussion of the more detailed and exact 
calculation of fluctuations is postponed until Section V. 

A.  Physical Mechanism of Fluctuations 
The conductance formula in (18) shows that the sample con- 

ductance is govemed entirely by the transmission coefficients 
Tij for the set of all possible channels available to carriers for 
traversing the conductor. The summation in (18) is strongly 
influenced by the destructive and constructive interference 
among the electron wavefunctions passing through the various 
channels. The phase shift suffered by a wavefunction in 
propagation along a channel depends on the electron energy 
and the spatial arrangement of the lattice disorders that serve 
as the elastic scatterers in the lattice. A fluctuation in G can 
therefore arise from a change in either the electron energy or 
the exact locations of imperfections in the lattice. An energy 
change can be induced by applied fields, while a rearrangement 
of disorder can occur through repeated sample preparation or 
in time. Each of these possibilities is examined next. 

1 )  Fluctuation with Fields: A change in the phase shift of 
carrier wavefunction can be brought about by applying an 
electrostatic potential or a magnetic field. An electrostatic 
potential, whether applied across the sample or through a gate 
electrode, directly changes the electrochemical potential of the 
carriers, and therefore the phase-shift, which is sensitive to 
the energy. This potential can be varied in order to alter the 
interference pattem between the electron waves. Let E, be the 
width of the carrier energy levels due to the finite conductor 
length, given by 

E, = iiD/L2. 

Then a change in the applied voltage by E,/q would alter the 
carrier energy by E,, and is sufficient to cause the phase shifts 
along individual channels to become uncorrelated with their 
original value. As a result, the interference between each pair 
of channels will change and completely alter the conductance. 
If a magnetic field perpendicular to the direction of current 
flow is applied, the phase of the electron wavefunction will 
again shift in proportion to the integral of the magnetic vector 
potential A. A magnetic field change of the order of $o/A will 
create a distinct interference pattem, where $0 is the quantum 
flux unit, and A the transverse area of the conductor. In effect, 
the application of a field creates a new conductor sample, 
having a different interference pattem among the channels. 

2) Sample-to-Sample Fluctuations: Next, consider a 
change in the exact distribution of disorders within the 
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lattice. Such changes would occur naturally among multiple 
samples prepared similarly, and account for the sample-to- 
sample fluctuations. Two conductors are macroscopically 
identical when they are characterized by the same macroscopic 
parameters, and any randomness in their structures is 
statistically the same (e.g., same density and type of defects), 
even though there are differences in detail (i.e., in the precise 
locations of the scattering centers). But macroscopic properties 
like conductance do not remain the same among nominally 
identical mesoscopic conductors, because they depend on the 
microscopic details. Even a small change (e.g., the relocation 
of a single scatterer) can potentially cause a large change 
in the conductance. To understand this assertion, consider a 
two-dimensional mesoscopic conductor, as shown in Fig. 1, 
in which the separation between the elastic scatterers is much 
larger than the Fermi wavelength. Then the electron traveling 
between two elastic scatterers can be treated as a plane wave, 
and the motion of the carrier can be viewed as a random 
walk, in which the carrier goes from one elastic scatterer to 
another, with a mean step size equal to the mean free path, 
and a speed equal to the Fermi velocity. If the conductor is 
strongly disordered, the carrier will visit a significant fraction 
of the scatterers in the sample, so that disturbing even a single 
scatterer will affect the phase of a significant fraction of the 
channels. As a result, the change in sample conductance can 
be just as large as that caused by disturbing a large fraction of 
the scatterers. The same argument applies in three-dimensional 
(bulk) conductors, but the fraction of channels affected can be 
expected to be smaller, so that the effect is less striking. 

3) Temporal Fluctuations: Finally, consider the fluctuation 
of conductance with time. For a given sample, a change in 
the spatial distribution of scattering potentials in a conductor 

channels will not be vastly different from each other. However, 
the conductor cannot be treated as a parallel connection of Nch 
independent conductors, each containing only one channel, 
because the transmissions in individual channels are highly 
correlated, being the result of scattering by the same set 
of lattice imperfections. Instead, it is equivalent (in overall 
conduction) to a conductor in which there is effectively a 
smaller number of channels that are independent of each other, 
each having a transmission coefficient equal to the typical 
value of the transmission through the actual channels. This 
effective number of channels  ne^ can be estimated as follows. 

In a conductor of length L and mean free path between colli- 
sions A, the average number of collisions suffered by a carrier 
in its transit through the conductor will be ( L / A ) ’ .  Since these 
collisions are the source of correlation, approximately (L/A)2 
different channels will give rise to one effectively independent 
channel. As a result 

Nch/Neff (L/Al2 .  (20) 

Essentially the same result can also be arrived at by a more 
careful analysis, involving a consideration of the distribution of 
the logarithms of those eigenvalues of the transmission matrix 
in (18) that contribute to conduction. Next, the value of Nch 
itself can be estimated in terms of the average conductance (G) 
with the help of (17), by recognizing W(d-l) as the transverse 
area of crosssection A of the conductor. Combining (13,  (17), 
and (14) relates Nch to the conductance as follows: 

(G)  (q2/h)(A/L)JNch. (21) 

(G) N (q2/h)JNeff. (22) 

Equations (20) and (21) together yield N,ff in the form 

can also occur spontaneously in time due to the motion of 
the defects serving as the scattering centers. A lattice disorder 
(such as an impurity or a fault) can move through the lattice 
of a solid conductor in several different ways. The defect may 
migrate by diffusion along the grain boundary; it may exist 
in a meta-stable state which becomes thermally activated at 

Consider next the elementary conductor with a single chan- 
nel. The conductance of such a one-channel conductor, to be 
denoted by g, is expressed by (16). In this expression, the 
transmission coefficient of the channel can fluctuate between 
0 and 1. Consequently, 

high temperatures; or, it may move by quantum mechanical 
tunnelling through a localizing potential barrier, a process 
which can occur even at low temperature. The migration of a 
defect once again leads to a change in the transmissions of the 
channels, and hence to a variation in conductance. 

B .  Universality of the RMS Value of Fluctuations 

The following explanation [26] of this observed character- 
istic in terms of Landauer’s formula is not only simple and 
intuitive but is also the basis of a technique for the numerical 
simulation of the fluctuations, discussed in Section V-B. 
The rms value of conductance fluctuations for a conductor 
can be estimated by subdividing it into more elementary 
single-channel conductors. For a mesoscopic conductor, the 
conductance depends on the summation of transmittances over 
all of the Nch channels in it, as given by (18). In the diffusive 
regime, the number of collisions is large, so that each channel 
consists of a path that involves scattering at a large number 
of centers; in such a system the transmissions of individual 

(9) q2/h (23) 

agrms/(g) N 1 (24) 

and 

are reasonable estimates; they describe the universality prop- 
erty for the rms value of the conductance of a one-channel 
conductor. Since the Neff channels are independent, it follows 
from (4) that 

aGrms/(G) N (l/JNeff)Agrms/ (9). (25) 

AGrms Q 2 / h  (26) 

Substituting the results of (22) and (24) into (25) leads to 

and shows that the rms conductance fluctuation is a universal 
constant, independent of the (G) of the conductor as well as 
of its geometrical and material properties, whether related to 
the lattice or to the impurities therein. 

The difference between the scaling of conductance fluctu- 
ations with sample size for a macroscopic and a mesoscopic 



~ 

2100 

conductor can now be understood. In a mesoscopic conductor, 
the transmission coefficient of a single channel does not scale 
with the conductor length L: the number of channels varies 
as the square of the transverse area: and the effective number 
of independent channels varies directly with the square of the 
transverse area as well as inversely with the square of the 
conductor length. By contrast, if a macroscopic conductor is 
subdivided into a set of independent conductors connected in 
parallel, then the conductance of each elementary conductor 
scales directly with area and inversely with L, while their 
number scales as the area. For the illustrative example of a 
three-dimensional cubic conductor mentioned in Section II- 
B, the relative fluctuation varies as 1 / d n  for macroscopic 
conductors, but as 1 /n  for mesoscopic conductors. 

Breakdown of universality can occur for a variety of rea- 
sons. For example, due to magnetic, geometric, and contact 
effects, intersubband scattering, and spin-orbit interactions, 
calculation and verification of these effects is an active area 
of research. 
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C .  Temperature Dependence of Fluctuations 

The observed increase of the rms fluctuations in conduc- 
tance with decreasing temperature is an unexpected result, and 
can be understood in terms of the temperature dependence 
of the phase coherence length L4 of carriers. The mean free 
path is related to the mean free time by A = G, where T 

is the mean free path and D the diffusivity of the carriers. 
As the temperature is lowered, qn increases, while tauel 
remains unchanged. Moreover, at low temperatures, where the 
condition A,, << A;, is met, q, c( l /Tm where T is the 
temperature, and m lies between 1 and 2. 

As the temperature of a sample of mesoscopic conductor is 
increased, the phase coherence length L4 of the carriers in the 
sample decreases rapidly. As a result, the size of the conductor, 
measured in the units of L,, becomes large. Such a sample 
can be viewed as being a composite of several independent 
subsamples, each of approximate dimensions L4, so that they 
can be treated independently. The wavefunction within one 
subsample is coherent, but is uncorrelated with that in another 
subsample. Since the subsamples are mutually independent, 
the fluctuations in the total conductance of the sample can be 
deduced in the manner of Section 11-B. As the temperature 
increases, the number of subsamples increases, and the rms 
fluctuation in G decreases, in accordance with (4). 

v .  CALCULATION OF FLUCTUATIONS 

There are two principal methods for theoretically calculating 
the magnitude of conductance fluctuations, one analytical and 
the other numerical. Historically, the existence of a universal 
value for the relative fluctuations was first explained, and its 
magnitude quantitatively derived, by a perturbation method 
applied to the transport theory: the basic idea behind that 
analytical calculation is briefly outlined in Section V-A below. 
Numerical calculations of functuation magnitude are useful for 
parametric studies, and are illustrated in Section V-B. 

A. Analytical Calculation by Perturbation Method 

The analytical method of calculating the variance of conduc- 
tance fluctuations relies on the so-called “ergodic hypothesis” 
due to Lee and Stone [16]. The hypothesis is motivated by 
the observation that the transmission coeffcient of electron 
wavefunction through a channel in the conductor can be 
changed in two totally different ways, one internal to the 
conductor and one external to it: 

1) By rearrangement of lattice disorders or defects within 
the conductor sample. 

2) By variation of the extemal parameters that influence 
the energy of carriers, namely the magnetic field B and 
the electrochemical potential EF.  

The ergodic hypothesis is based on the postulate that as the 
two external parameters are varied in the neighborhood of their 
nominal state (i.e., their “quiescent” values) as 

the transmission coefficients of the sample will be swept 
through the entire range of transmission coefficients attain- 
able through the rearrangement of defects. If one accepts 
this premise, the fluctuations in conductance G that would 
occur by varying the exact locations of the defects (i.e., over 
an ensemble of conductors) can be observed from a single 
conductor, simply by varying the external parameters A B  and 
AEF.  Formally, the ergodic hypothesis states that the variance 
in G values as a function of the external parameters B and 
EF is equal to the variance in G values over an ensemble of 
conductors with varying defect configurations, but at a fixed 
value of B and EF. 

The ergodic hypothesis should be viewed only an an approx- 
imation and a convenient scheme for calculation. It is known 
to be invalid at high fields, and at low fields its applicability 
can be judged only through verifying the correctness of its 
consequences. 

The utility of the ergodic hypothesis lies in the fact that the 
sensitivity of G to the magnetic field and the Fermi level can be 
explicitly calculated by the usual Green’s function method of 
transport theory. As a result, the variance in G due to changes 
in B and EF can be directly found from ergodic hypothesis, 
this variance is equal to the sample-to-sample variance of 
conductance. The result of such a calculation [27] is as follows 

6 q2 
= 7 

1 0 0 0 0  

m=l  n=O [m2 + ( T L L , / L , ) ~  + (L,/,rrAi,)2]2 

for a mesoscopic conductor of length L, (along the direction 
of current flow) and transverse dimension L,, and an inelastic 
diffusion length Ain = Jo‘i;;;;;, where 7 i n  is the’inelastic mean 
free time, and D is the effective diffusivity under the quiescent 
conditions. 
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B .  Numerical Calculation 

The conductance of a mesoscopic conductor, and the fluc- 
tuations in it, can also be calculated from carrier scattering 
matrix by numerical computation. The scattering matrix yields 
the transmission matrix t, and the conductance can be calcu- 
lated from it using (18). A number of authors have carried 
out such computations. One representative example is briefly 
described here to illustrate the results obtained; the selected 
example also brings out some limitations of the universal 
conductance fluctuation theory due to localization effects in 
sample with longer lengths. 

Tamura and Ando [28], [29] consider a two-dimensional 
conductor, with a sample length L along the direction of 
conduction, and a sample width W in the lateral direction. 
Each end of the conductor is assumed terminated in an ideal 
lead and a reservoir. The impurity atoms, which serve as 
the elastic scatterers, are assumed to have a &function like 
electrostatic potential, and to have a random distribution within 
the sample. The electrons are treated as mutually noninter- 
acting, and the impurity strength is taken to be sufficiently 
small that the higher-order (Born) scattering from an impurity 
can also be neglected. Starting with the scattering matrix for 
a single impurity, the scattering matrix for the entire multi- 
impurity sample is synthesized, and then used to calculate 
the transmission coefficients. These in turn can be used to 
numerically compute the conductance G, and its moments over 
an ensemble of similar conductors. The computed results are 
shown in Fig. 2 for the case when no magnetic field is present. 

The computed average conductance (G) of the two- 
dimensional sample depends on the sample dimensions in 
the manner shown in Fig. 2(a), where the sample length L 
is normalized with respect to the mean free path A, while 
the sample width is normalized with respect to the Fermi 
wavelength XF as in (15). The ratio of L to XF is kept 
constant, and equals 5 1.25. The ratio of the localization length 
< to is found to be equal to the number of filled subbands, 
to within numerical accuracy. Several features of the results 
are noteworthy. Consider first the dependence of (G) on L 
for a fixed value of W .  When L is very small, of the order 
of the mean free path A, the number of collisions suffered 
by the electrons in the sample is small, so that the carrier 
transport is nearly ballistic. In the limit of ballistic transport, 
the conductance simply has the quantized value, given by 

and depends only on Nsb,  the number of subbands that are 
filled (i.e., are below Fermi level). This number is approx- 
imately twice the sample width measured in units of Fermi 
wavelengths; its values are 5, 10, and 20 for the three cases 
considered in Fig. 2(a). As L increases, the sample begins 
to approach the diffusive regime where (18) applies, and the 
conductance decreases. When L becomes large compared to 
the coherence length <, the conductor can be considered as 
a series connection of L/E conductors, each of length <, 
and its total conductance decreases with increasing L in an 
exponential manner. 

1 E:l , I 1 
2.75 

0 
10 20 30 40 

Sample Length (Units 01 A) 

(b) 

Fig. 2. Numerically computed conductance and rms conductance fluctua- 
tions in an idealized sample of conductor, as a function of the sample length 
L and for various values of sample width I>$,*. The length is normalized with 
respect to the carrier mean free path A, and the width with respect to the camer 
Fermi wavelength X r .  (Reprinted from: H .  Tamura and T .  Ando, "Numerical 
and analytical studies of quantum transport in quantum wires," in Transport 
Phenomena in Mesoscopic Systems, H .  Fukuyama and T. Ando. Eds., Proc. 
14th Taniguchi Symp., Shima, Japan, Nov. 1991. Berlin: Springer-Verlag, 
1992, pp. 117-1281, 

Next consider the dependence of conductance on sample 
width W .  An increase in W has two consequences. First, the 
number of occupied subbands increases linearly with W ,  so 
that the conductance G is increased by a similar factor. Second, 
the coherence length E becomes larger; as a result a larger 
value of L is necessary before the sample can be treated as 
multiple independent sections, and the dependence of (G) on 
L becomes exponential. 

Fig. 2(a) brings out another issue. When the ensemble 
average of sample conductance is calculated, the samples with 
very large conductance values have an unduly large influence 
on the average value. An alternative is to define a logarithmic 
average as follows: 

(G)log = exp[(ln G)] .  (30) 

This average reduces the contribution of large G values, and 
is therefore lower. Fig. 2 shows that the logarithmic average 
deviates from (G) only when the sample length L is large 
compared to <, implying that the very large values of sample 
G occur only for long samples. 
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Consider next the rms value of fluctuations in conductance, 
shown in Fig. 2(b). For small values of L where the carrier 
transport is nearly ballistic, AG,,, increases with increasing 
L, independent of W .  When L is sufficiently large that the 
transport becomes diffusive, AG,,, is independent of the 
sample dimensions and hence of (G). This is the regime where 
universal conductance fluctuations theory can be applied. 
When L >> I ,  the magnitude of AG,,, decreases with 
increasing L due to localization effects. When the sample 
width is small, the number of channels through the conductor is 
also small, and the localization effects set in for smaller value 
of L. As a result, for very small W ,  there is no constant AG,,, 
region characteristic of UCF, lying in between the ballistic 
and localization regimes. The computed results show that, in 
the localization regime, AG,,, is determained essentially by 
L i t ,  and is not sensitive to W .  

VI. EXPERIMENTAL OBSERVATIONS 

The volume of experimental work published on the subject 
is sizable; as a result, even a brief summary of each individual 
work is neither possible due to space limitations, nor necessary 
given the tutorial objectives of this paper. Instead, a collective 
summary of the entire literature is attempted in Section VI- 
A, and indicates the range of experimental methods used, and 
the generic conclusions drawn. However, the exact findings, 
and their associated caveats and limitations, can only be 
understood in the context of a specific experiment; these 
are illustrated by summarizing three experimental studies in 
Sections VI-B through VI-D, that are representative of the 
body of literature, and are selected to present a variety of 
experimental conditions, issues, and results. 

A .  Summary of Experimental Studies 

ex- 
perimental observations of fluctuations in conductance, and 
other mesoscopic transport properties, have been carried out 
on a variety of samples, including thin films of Bi [30], Pt [31], 
Ag [32], Au [ 121, and Cu [33]; channels of Si MOS transistors 
[34], GaAs/AlGaAs semiconductor heterojunctions [35], and 
HgCdTe MISFET’s [36]; and amorphous materials [37]. 
These include materials that have been evaporated, sputtered, 
deposited, and grown. The samples themselves have taken 
many different structural forms, including constrictions in thin 
film conductors, point contacts, air-bridges, and field-effect 
devices controlled by a gate. The dimensions of the conductor 
sample have been made ultrasmall, and controlled, in a number 
of ways including etching, selective growth, photolithographic 
patteming, electron beam lithography, electrostatic bounding 
(as in gate electrodes and depletion layers), and change in 
composition (as in heterostructures). And finally, samples 
tested have been quasi one-dimensional, two-dimensional, 
and three-dimensional. 

Mesoscopic 
fluctuations are observed not only in conductance but also 
in many other transport properties, including magnetore- 
sistance, photovoltaic and thermoelectric coefficients, light 
transmittance through disordered media, and critical current 

I )  Sample Material, Structure, and Preparation: The 

2 )  Operating and Measurement Conditions: 

in superconductors. The conductance fluctuations have been 
observed at various cryogenic temperatures below 10 K, down 
to milliKelvins. The studied variations (i.e., fluctuations) in 
conductance have been caused by magnetic field [38], applied 
voltage [39], multiple samples with similar preparation [35], 
and time [40]. The changes in sample conductance have 
been measured using dc as well as ac signals. Finally, the 
changes in the magnitude of fluctuations have been studied 
as a function of temperature [41], [42], thermal cycling [43], 
large magnetic fields [44], IR radiation [45], electrical shocks 
[46], and high-energy electron irradiation [47]. 

3) Conclusion: The observations, although different in de- 
tail, do not vary fundamentally with the conductors, or with 
their method of preparation. The general features of observa- 

may be summarized as follows: 
In the mesoscopic regime, the conductance fluctuations 
(AG G - (G))  have an rms value given by 

independent of the average value of the conductance 
(G),  i.e., the fluctuations are scale invariant. 
The magnitude of conductance fluctuations is indepen- 
dent of the sample size, the degree of disorder, or the 
microscopic details of the sample; hence the designation 
“universal.” 
As the temperature is lowered, the rms fluctuations in 
conductance increase in size, approaching the value in 
(31). 
A small change in disorder (even the relocation of one 
lattice defect) can potentially cause a large change in 
the sample conductance. 
The fluctuations have non-Gaussian distribution and 
other unexpected statistical properties. 

B.  Sample Size Dependence 
The rms value of conductance fluctuations is expected to 

have a universal value, independent of the sample dimensions, 
only within the region of applicability of UCF theory. A 
measurement of the magnitude of fluctuations as a function of 
sample dimensions is therefore useful both for confirming this 
expectation, and for studying the transition to other regions. 
Two such transitions can be explored by changing sample 
dimensions. The longitudinal dimension (sample length L )  
determines whether the sample is in the ballistic or the dif- 
fusive regime; in the ballistic regime, there are no differential 
phase shifts of wave function among the possible channels 
through the sample due to an absence of scattering, therefore 
no quantum intereference and no conductance fluctuations are 
expected. The transverse dimension (sample width W )  govems 
the number of channels through the sample, and therefore the 
number of wavefunctions among which quantum interference 
is possible. 

One measurement of the sample-size dependence of fluctua- 
tions is reported by Ishibashi et al. [35]. Their conductor sam- 
ple was the channel formed in an MBE-grown GaAs/AlGaAs 
heterojunction, maintained at a temperature of 1.2 K, having 
a mean free path of approximately 1 pm. Sample length was 
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Fig. 3. Measured resistance and rms value of conductance fluctuations for 
channel at GaAs/AIGaAs heterojunction. (a) Sample resistance as a function 
of transverse magnetic field. (b) Conductance fluctuations as a function of 
sample dimensions. (Reprintedfrom: K .  Ishibashi, “Conductance puctuations 
in GaAslAiGaAs narrow wires in quasi-ballistic regime,” Japan. J .  Appl. Phys., 
vol. 31. Pt. I ,  no. 12B, pp.  4504-4507, Dec. 1992). 

varied by fabricating samples of 2 and 6 pm lengths, while the 
sample width was govemed by a negative voltage applied to 
a gate electrode; for gate voltages between -0.6 V (at which 
the electron gas is fully depleted), and -2.4 V (beyond which 
the carrier concentration is also simultaneously reduced), the 
sample width varied from 0.5 pm to a few percent of nm. 
Strong magnetic fields upto 8 T were used for measuring the 
magnetoresistance that is used for estimating phase coherence 
length L,; weaker fields below 1 T were used for causing 
fluctuations in sample conductance so as to measure its rms 
value. The variation of sample resistance with magnetic field 
is shown in Fig. 3(a), and the dependence of the AG,,, on 
sample width is shown in Fig. 3(b) for the two different sample 
lengths. 

1) The fine structure of the field dependence of sample resis- 
tance shown in Fig. 3(a), is reproducible when carefully 
measured. However, it changes if the sample is subjected 
to thermal recycling or electric shock, which would be 
expected to modify the impurity configuration within the 
sample in microscopic detail. 

2) For the sample of length 6 pm, which is in the diffusive 
regime since L / A  FZ 6, the value of AG,,, is independent 
of the sample width, as would be expected from the UCF 
theory. 

Their principal observations are as follows. 

3) For the sample of 2 pm length, AG,,, increases with 
increasing sample width. This sample is in the quasiballis- 
tic transport regime, so that the correlations between the 
channels throught the sample should be weak due to the 
small number of scattering events. The effective number 
of channels  ne^ approaches the actual number of channels 
N c h  as evident from (20), and N c h  is related to w by (17). 
This provides a qualitative explanation for the observation. 

4) For larger sample widths where AG,,, becomes indepen- 
dent of W ,  its value for the 2 pm sample is about an order 
of magnitude larger than for the 6 pm sample. The phase 
coherence length L+, estimated from magnetoresistance 
measurements, is approximately 1 pm. Therefore the sam- 
ples can be viewed as L/L+ coherent subunits, connected 
together in series, with an averaging of fluctuations over 
a larger number of subunits for the longer sample. This 
accounts for a factor of 5 reduction in the values of AG,,, 
for the longer sample compared to the shorter one. 

C .  Time-Dependent Fluctuations 

The measurement of conductance variations with time 
provides some additional information that is not obtainable 
through field-induced variation of conductance. First, it shows 
the natural time scale associated with the fluctuating processes, 
and thus allows their time constants to be determined; the same 
information in the frequency domain would be provided by 
the power spectral density of the fluctuations. Second, with 
suitable filtering, it permits the elementary events causing the 
fluctuations to be resolved in time and observed individually 
rather than collectively; this can help identify the specific 
features of the elementary events (e.g., their magnitude or 
rate) through which an influencing factor (such as temperature) 
affects the composite fluctuations. 

One such measurement is reported by Meisenheimer and 
Giordano [32], whose mesoscopic conductor consisted of a 
sputtered thin silver film having a thickness around 10 nm, 
and with dimensions 1 pm x 1 pm. The estimated phase 
coherence length in these samples is approximately 0.2 pm at 
79 mK. The principal phase-breaking mechanism is estimated 
to be electron-electron scattering, which has a characteristic 
length equal to the thermal diffusion length in (8). 

The measured results are shown in Fig. 4. Fig. 4(a) shows 
the variation of sample resistance for different sample temper- 
atures, after the faster fluctuations (with time constants of less 
than 5 min) have been filtered out. Two features of this result 
are noteworthy. First, the magnitude of fluctuations increases 
very rapidly as the temperature decreases. The temperature 
dependence of the rms value of conductance fluctuations, 
expressed in units of q2/h ,  is shown in Fig. 4(b). Second, the 
arrows in the plots of Fig. 4(a) mark the ocassions where the 
resistance of the sample fluctuates away from, and then retums 
to, a nominal region in time intervals of the order of 1 hour. 
This is indicative of the motion of a scattering center between 
two locally stable states, resulting in two resistance states. 
The power spectral density of the fluctuations (in arbitrary 
units) is shown in Fig. 4(c), and displays a region of roughly 
1/ f dependence over approximately two decades of freqeuncy 
between to lop3 Hz. 
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Fig. 4. Observed time-variation of the conductance of a thin-film silver con- 
ductor. (a) Resistance as a function of time for various sample temperatures. 
Arrows indicate reversible switching between two states. (b) RMS value of 
conductance as a function of sample temperature. (c) Power spectral density 
of fluctuations. Straight line denotes l/f dependence. (Reprinted from: T. 
L.  Meisenheimer and N. Giordano, “Conductance puctuations in thin silver 
films.” Phys. Rev. B ,  vol. 39, no. 14, Issue I .  pp. 9929-9936, May 1989). 

D .  Impact of a Single Defect 

Several of the observed features of conductance fluctuations 
are suggestive of the hypothesis that the reconfiguration of 
even a single defect in the conductor lattice leads to a 
measurable change in conductance and is therefore visible 
in the fluctuations. These features include the reversibility of 
fluctuation, the magnitude of discrete resistance change, and 
the magnetic field dependence of conductance measured over 
a range of fields many times the correlation field. A more 
definitive method of identifying the motion of a single defect 
as the cause of conductance fluctuation is through reducing 
the size of the conductor, and the separate measurement of 
the local intereference (LI) effect, which is an altemative 
mechanism of fluctuations. 

The measurements reported by Ralls et al. [33] show the 
transition between the UCF and the LI fluctuations. Their 
conductor sample is essentially the thin film equivalent of 
a metal point contact, formed by deposition of evaporated 
copper on a via hole in silicon nitride, thereby creating a 
metal constriction of about 50 nm length and a 3-20 nm 
diameter, with wider electrodes at both ends. The conductor 
as grown is ballistic, having a mean free path of 180 nm, 
but the application of a voltage in the range of 100 to 
500 mV causes Cu atoms to move by electromigration, causing 
the resistance to decrease, and creating a disorder in the 
constriction region between electrodes. The disorder so created 
is confined to a very small region near the constriction, leaving 
the electrode regions relatively ordered, with their high phase 
coherence length, so that they do not contribute to the observed 
fluctuations. 

The sample conductance fluctuations are observed by ap- 
plying a small dc bias voltage of approximately f 1 0  mV. 
Measurements of conductance made at 4.2 K and zero mag- 
netic field are shown in Fig. 5. The sample, as grown, is 
ballistic and displays no measurable conductance fluctuations. 
Electromigration creates a less-ordered material, and reduces 
the elastic mean free path, in the constriction region, and the 
measured sample conductance after the introduction of defects 
is shown in the lower plot in Fig. 5. Three features of this plot 
are noteworthy. First, the appearence of the fine structure in 
this plot indicates the presence of fluctuation effects due to 
the disordered material. Second, the fine structure does not 
change even in the presence of a magnetic field as large as 
2.6 T, indicating that the correlation field for this sample is 
very large, and therefore the disordered region is very small. 
Finally, the rms value of conductance fluctuation is only a 
fraction of q2/h ,  indicating that there is still a significant 
ballistic transport taking place throught the constriction. 

Intermediate values of dc voltage bias, lying in between 
those used for conductance masurement (-J 10 mV) and those 
used to create disordered regions (-J 100 mV), can be used to 
reconfigure a single influencial scatterer. Such bias voltages 
applied in a transient manner cause the defect configuration to 
switch to a different state, and freeze the configuration until 
the bias is raised again. Conductance fluctuations measured in 
each of the two states show the presence of UCF, as indicated 
by the bias and magnetic field sensitivity of the fluctuations. 
The change in the rms value of the fluctuations depends on the 
applied bias voltage in a random manner, conistent with the 
expectation that a change in a single scatterer will influence 
the phase shifts of the interefering wavefunctions in a complex 
manner. 

VII. LOW FREQUENCY AND l/f NOISE 

In the experimental work summarized in Section VI, the 
conductance fluctuations occur either as a function of a varying 
extemally applied excitation, or spontaneously in time. A 
complementary method of observing the fluctuations is in 
the frequency domain, where they appear as low frequency 
conductance noise, and have a power spectral density that is 
approximately proportional to l /f,  where f is the frequency. 
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Fig. 5. Measured incremental conductance of a copper microbridge as 
a function of the dc bias voltage before and after the introduction of 
defects in the mesoscopic region. (Reprintedfrom: K. S.  Ralls, D. C. Ralph, 
and R. A. Buhrman, “Impact of a single defect on fhe conductance: Local 
interference and universal Conductance puctuations.” Phys. Rev. B ,  vol. 47, 
no. 16. pp. 10509-10514, Apr. 1993). 

Since a variety of mechanisms are capable of producing low- 
frequency noise, the measured noise spectra can be expected 
to be a composite of the effects of various fluctuation mech- 
anisms. The separation and identification of their individual 
contributions requires careful, painstaking work. Experiments 
indicate that for weakly disordered conductors in metallic 
regime at low temperatures, the fluctuations due to phase 
coherent effects are a dominant source of low-frequency noise. 

A comprehensive treatment of the subject of low-frequency 
conductance noise would be lengthy, and will not be attempted 
here. Fortunately, good surveys including extensive bibliogra- 
phies are available in the literature, both for the theoretical 
[48] and the experimental [49], [50] aspects of the subject. 
Several distinct mechanisms can give rise to conductance 
fluctuations of different types in ultra-small devices, of which 
the three principal types are the universal conductance fluc- 
tuations (UCF), the local interference fluctuations (LIF), and 
the strongly localized interference fluctuations (SLIF); other 
mechanisms may exist as well [51]. All of these types of 
fluctuations are based on the scattering of electron waves 
from impurities, but there are significant differences in their 
mechanisms, conditions of occurrence, and characteristics. 
The UCF have been discussed at length in this paper. The 
SLIF are caused by hopping conduction in semiconductors, 
where the conductance, as well as the relative fluctuations 
in conductance, depend exponentially on the size L of the 
conductor sample, measured in the units of localization length. 
Since a sample with UCF can, upon a suitable change of 
some parameters corresponding to a different regime, display 
low-frequency conductance fluctuations due to LIF, a brief 
description of this mechanisms is given in this section. 

The UCF are observed in the “dirty metal” regime where 
A;, >> lie,.  There are two ways in which one can approach 

the “clean metal” regime where this inequality is reversed: 
either Ai, can be decreased, or A,l can be increased. hi, can 
be decreased by raising the temperature, which increases the 
supply of phonons that cause inelastic scatterings. A,[ can be 
increased by reducing the degree of disorder in the sample 
which reduces the number of elastic scatterers. In addition, if 
the elastic mean free path of the carriers is larger than the phase 
coherence length, the smallest independent part of the sample 
is no longer in the diffusive regime. The LIF are observed in 
such samples which have a higher purity, or are at a higher 
temperature, compared to those in which UCF are observed; 
and where the elastic and the inelastic mean free paths are 
of the same order, so that the phase coherence length L,  is 
comparable to the mean free path A [52]. 

The conductance of a sample has been shown to be de- 
pendent on the transmission coefficients of the electron wave 
through the channels, which in turn depend on the scattering 
cross section of the scatterers. The influence of the migration 
of a defect on carrier transmission depends on the locations of 
other nearby defects. For example, if an isolated impurity atom 
in a lattice moves to a neighboring location, the lattice can be 
viewed as being merely displaced spatially, and the conductor 
remains unchanged. By contrast, if the migrating impurity 
atom was adjacent to a grain boundary, and is differently 
placed with respect to the boundary after migration, the net 
effect of both scatterers will be different, and the overall 
transmission will change. The motion of an impurity within 
the lattice can therefore cause a fluctuation in its scattering 
cross section. Local interference fluctuations are caused by a 
superposition of the cross section fluctuations. The resulting 
fluctuations in scattering rate, and hence in the conductance 
are observed as LIF. 
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